Limits...
On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.


Reaction times of the training and control groups in the repetition and single-task trials of the task switching experiment. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368385&req=5

Figure 4: Reaction times of the training and control groups in the repetition and single-task trials of the task switching experiment. Error bars indicate standard errors of the mean.

Mentions: Mixing costs. We were interested in whether training affected sustained control processes, reflected as mixing costs in our task switching paradigm. The analysis on the mixing costs revealed a main effect of Session [F(1, 35) = 51.14, p < 0.001, η2p = 0.59], indicating faster RTs in post-test (M = 719 ms) than in pre-test (M = 803 ms). The RTs were also faster in single-task trials (M = 716 ms) than in repetition trials (M = 806 ms), [F(1, 35) = 28.12, p < 0.001, η2p = 0.45]. Furthermore, two interactions were significant. First, the reliable Group × Session interaction [F(1, 35) = 4.38, p < 0.05, η2p = 0.11] reflects the fact that the training group's improvement from pre-test to post-test was larger (M = 108 ms) than that of the control group (M = 59 ms). Second, and importantly, the three-way interaction Group × Session × Trial type was also significant [F(1, 35) = 4.55, p < 0.05, η2p = 0.12], which suggests that the group-specific improvement is differently expressed for different types of trials. Two further Group × Session ANOVAs were conducted separately on the RTs in single-task trials and repetition trials in order to investigate, which types of trials showed the stronger group-specific training effect. For the single-task trials, only the main effect of Session reached significance [F(1, 35) = 14.51, p < 0.001, η2p = 0.29], such that all participants improved from pre-test (M = 744 ms) to post-test (M = 689 ms). The analysis for the repetition trials revealed a reliable main effect of Session [F(1, 35) = 55.13, p < 0.001, η2p = 0.61] but, additionally, the Group × Session interaction reached significance [F(1, 35) = 8.52, p < 0.01, η2p = 0.20], confirming that the improvement of the training group from pre-test to post-test was larger (M = 155 ms) than that of the control group (M = 68 ms) (Figure 4). This indicates a greater improvement of the training group in mixing costs, compared with the control group. Other main effects or interactions or results from the analysis on error rates were not significant (all p's > 0.12).


On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

Reaction times of the training and control groups in the repetition and single-task trials of the task switching experiment. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368385&req=5

Figure 4: Reaction times of the training and control groups in the repetition and single-task trials of the task switching experiment. Error bars indicate standard errors of the mean.
Mentions: Mixing costs. We were interested in whether training affected sustained control processes, reflected as mixing costs in our task switching paradigm. The analysis on the mixing costs revealed a main effect of Session [F(1, 35) = 51.14, p < 0.001, η2p = 0.59], indicating faster RTs in post-test (M = 719 ms) than in pre-test (M = 803 ms). The RTs were also faster in single-task trials (M = 716 ms) than in repetition trials (M = 806 ms), [F(1, 35) = 28.12, p < 0.001, η2p = 0.45]. Furthermore, two interactions were significant. First, the reliable Group × Session interaction [F(1, 35) = 4.38, p < 0.05, η2p = 0.11] reflects the fact that the training group's improvement from pre-test to post-test was larger (M = 108 ms) than that of the control group (M = 59 ms). Second, and importantly, the three-way interaction Group × Session × Trial type was also significant [F(1, 35) = 4.55, p < 0.05, η2p = 0.12], which suggests that the group-specific improvement is differently expressed for different types of trials. Two further Group × Session ANOVAs were conducted separately on the RTs in single-task trials and repetition trials in order to investigate, which types of trials showed the stronger group-specific training effect. For the single-task trials, only the main effect of Session reached significance [F(1, 35) = 14.51, p < 0.001, η2p = 0.29], such that all participants improved from pre-test (M = 744 ms) to post-test (M = 689 ms). The analysis for the repetition trials revealed a reliable main effect of Session [F(1, 35) = 55.13, p < 0.001, η2p = 0.61] but, additionally, the Group × Session interaction reached significance [F(1, 35) = 8.52, p < 0.01, η2p = 0.20], confirming that the improvement of the training group from pre-test to post-test was larger (M = 155 ms) than that of the control group (M = 68 ms) (Figure 4). This indicates a greater improvement of the training group in mixing costs, compared with the control group. Other main effects or interactions or results from the analysis on error rates were not significant (all p's > 0.12).

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.