Limits...
On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.


The number of correctly reported four-item sequences in the VS updating task. Performance for both groups is illustrated separately for pre-test and post-test. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368385&req=5

Figure 3: The number of correctly reported four-item sequences in the VS updating task. Performance for both groups is illustrated separately for pre-test and post-test. Error bars indicate standard errors of the mean.

Mentions: A 2 (Group: training vs. control) × 2 (Session: pre-test vs. post-test) × 3 (Block: AV vs. VS vs. dual-modality) mixed-design ANOVA conducted on the mean amount of correctly reported four-item sequences yielded a main effect of Session [F(1, 36) = 11.95, p < 0.005, η2p = 0.25], reflecting the fact that the participants reported more sequences correctly at post-test (M = 4.21) than at pre-test (M = 3.27). Also the main effect of Block was significant [F(2, 72) = 57.93, η2p = 0.62], which confirmed that the amount of correctly reported sequences varied between the three blocks (AV: M = 5.11; VS: M = 4.08; dual-modality: M = 1.98). The Group × Session × Block interaction reached significance [F(2, 72) = 3.60, p < 0.05, η2p = 0.09], suggesting that an interaction of Session and Block was modulated by the factor Group. Therefore, each block was separately submitted to two (Group: training vs. control) × 2 (Session: pre-test vs. post-test) ANOVAs. For the AV and dual-modality blocks, the Group × Session interaction was not significant (both p's > 0.3). However, for the VS block, this interaction was reliable [F(1, 36) = 5.48, p < 0.05, η2p = 0.13]. Bonferroni corrected paired t-tests conducted for the pre-test and post-test performances of the training and the control group confirmed that the trained participants showed an increase in the amount of correctly reported four-item sequences [t(19) = −2.49, p < 0.05], while there was no difference for the control group between their pre- and post-test performances (p > 0.48) (Figure 3). Both groups did not differ with respect to their pre-test (p = 0.80), but differed regarding their post-test performance [t(17) = 3.02, p < 0.01, Cohen's d = 0.82]. The main effect of Group and the remaining interactions were non-significant (all p's > 0.10). These results suggest that the trained participants improved in the VS updating task but not in the AV or the dual-modality task, and that the improvement of the training group in the VS task was not driven by differences in the groups' performances already at pre-test.


On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

The number of correctly reported four-item sequences in the VS updating task. Performance for both groups is illustrated separately for pre-test and post-test. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368385&req=5

Figure 3: The number of correctly reported four-item sequences in the VS updating task. Performance for both groups is illustrated separately for pre-test and post-test. Error bars indicate standard errors of the mean.
Mentions: A 2 (Group: training vs. control) × 2 (Session: pre-test vs. post-test) × 3 (Block: AV vs. VS vs. dual-modality) mixed-design ANOVA conducted on the mean amount of correctly reported four-item sequences yielded a main effect of Session [F(1, 36) = 11.95, p < 0.005, η2p = 0.25], reflecting the fact that the participants reported more sequences correctly at post-test (M = 4.21) than at pre-test (M = 3.27). Also the main effect of Block was significant [F(2, 72) = 57.93, η2p = 0.62], which confirmed that the amount of correctly reported sequences varied between the three blocks (AV: M = 5.11; VS: M = 4.08; dual-modality: M = 1.98). The Group × Session × Block interaction reached significance [F(2, 72) = 3.60, p < 0.05, η2p = 0.09], suggesting that an interaction of Session and Block was modulated by the factor Group. Therefore, each block was separately submitted to two (Group: training vs. control) × 2 (Session: pre-test vs. post-test) ANOVAs. For the AV and dual-modality blocks, the Group × Session interaction was not significant (both p's > 0.3). However, for the VS block, this interaction was reliable [F(1, 36) = 5.48, p < 0.05, η2p = 0.13]. Bonferroni corrected paired t-tests conducted for the pre-test and post-test performances of the training and the control group confirmed that the trained participants showed an increase in the amount of correctly reported four-item sequences [t(19) = −2.49, p < 0.05], while there was no difference for the control group between their pre- and post-test performances (p > 0.48) (Figure 3). Both groups did not differ with respect to their pre-test (p = 0.80), but differed regarding their post-test performance [t(17) = 3.02, p < 0.01, Cohen's d = 0.82]. The main effect of Group and the remaining interactions were non-significant (all p's > 0.10). These results suggest that the trained participants improved in the VS updating task but not in the AV or the dual-modality task, and that the improvement of the training group in the VS task was not driven by differences in the groups' performances already at pre-test.

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.