Limits...
On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.


Improvement in the performance of the training group through the training period and the performance of the control group in the pre- and post-tests in the dual n-back task. For each session, the mean n-back level is presented. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368385&req=5

Figure 2: Improvement in the performance of the training group through the training period and the performance of the control group in the pre- and post-tests in the dual n-back task. For each session, the mean n-back level is presented. Error bars indicate standard errors of the mean.

Mentions: Owing to technical problems, the data of two participants in the control group was lost (one male, one female), and thus, the analyses for the dual n-back task included the data of 16 control participants. A 2 (Group: training vs. control) × 2 (Session: pre-test vs. post-test) mixed-design analysis of variance (ANOVA) yielded main effects of Group [F(1, 34) = 29.18, p < 0.001, η2p = 0.46] and Session [F(1, 34) = 60.52, p < 0.001, η2p = 0.64], indicating that the trained group generally showed higher n-back levels (M = 3.63) than the control group (M = 1.24), and that the achieved mean n-back level at post-test (M = 3.78) was higher than that at pre-test (M = 2.31) across groups. Importantly, the Group × Session interaction was significant [F(1, 34) = 54.94, p < 0.001, η2p = 0.62], indicating a larger improvement of the training group than that of the control group (Table 1, Figure 2). This was confirmed by paired t-tests that showed a significant difference between the pre-test and post-test performances of the training group [t(19) = −8.70, p < 0.001] and no such difference for the control group (p > 0.44). There was no difference between the performances of the two groups at pre-test (p = 0.49).


On the impacts of working memory training on executive functioning.

Salminen T, Strobach T, Schubert T - Front Hum Neurosci (2012)

Improvement in the performance of the training group through the training period and the performance of the control group in the pre- and post-tests in the dual n-back task. For each session, the mean n-back level is presented. Error bars indicate standard errors of the mean.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368385&req=5

Figure 2: Improvement in the performance of the training group through the training period and the performance of the control group in the pre- and post-tests in the dual n-back task. For each session, the mean n-back level is presented. Error bars indicate standard errors of the mean.
Mentions: Owing to technical problems, the data of two participants in the control group was lost (one male, one female), and thus, the analyses for the dual n-back task included the data of 16 control participants. A 2 (Group: training vs. control) × 2 (Session: pre-test vs. post-test) mixed-design analysis of variance (ANOVA) yielded main effects of Group [F(1, 34) = 29.18, p < 0.001, η2p = 0.46] and Session [F(1, 34) = 60.52, p < 0.001, η2p = 0.64], indicating that the trained group generally showed higher n-back levels (M = 3.63) than the control group (M = 1.24), and that the achieved mean n-back level at post-test (M = 3.78) was higher than that at pre-test (M = 2.31) across groups. Importantly, the Group × Session interaction was significant [F(1, 34) = 54.94, p < 0.001, η2p = 0.62], indicating a larger improvement of the training group than that of the control group (Table 1, Figure 2). This was confirmed by paired t-tests that showed a significant difference between the pre-test and post-test performances of the training group [t(19) = −8.70, p < 0.001] and no such difference for the control group (p > 0.44). There was no difference between the performances of the two groups at pre-test (p = 0.49).

Bottom Line: In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed.As for the other executive functions, trained participants improved in a task switching situation and in attentional processing.These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Ludwig-Maximilians-Universität Munich, Germany.

ABSTRACT
Recent studies have reported improvements in a variety of cognitive functions following sole working memory (WM) training. In spite of the emergence of several successful training paradigms, the scope of transfer effects has remained mixed. This is most likely due to the heterogeneity of cognitive functions that have been measured and tasks that have been applied. In the present study, we approached this issue systematically by investigating transfer effects from WM training to different aspects of executive functioning. Our training task was a demanding WM task that requires simultaneous performance of a visual and an auditory n-back task, while the transfer tasks tapped WM updating, coordination of the performance of multiple simultaneous tasks (i.e., dual-tasks) and sequential tasks (i.e., task switching), and the temporal distribution of attentional processing. Additionally, we examined whether WM training improves reasoning abilities; a hypothesis that has so far gained mixed support. Following training, participants showed improvements in the trained task as well as in the transfer WM updating task. As for the other executive functions, trained participants improved in a task switching situation and in attentional processing. There was no transfer to the dual-task situation or to reasoning skills. These results, therefore, confirm previous findings that WM can be trained, and additionally, they show that the training effects can generalize to various other tasks tapping on executive functions.

No MeSH data available.