Limits...
Adjustable hybrid diffractive/refractive achromatic lens.

Valley P, Savidis N, Schwiegerling J, Dodge MR, Peyman G, Peyghambarian N - Opt Express (2011)

Bottom Line: Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens' focal position.Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths.Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

View Article: PubMed Central - PubMed

Affiliation: College of Optical Sciences, University of Arizona Tucson, Arizona 85721, USA. pouria@u.arizona.edu

Show MeSH

Related in: MedlinePlus

(a-e) Focal spots when the diffractive and fluidic lenses are combined to produce the best focus for the red and the blue lights. The focal length values at the green wavelength are: (a) fdiffractive = 1000 mm, ffluidic = 252 mm; (b) fdiffractive = 500 mm, ffluidic = 126 mm; (c) fdiffractive = 250 mm, ffluidic = 63 mm; (d) fdiffractive = 400 mm, ffluidic = 101 mm; (e) fdiffractive = 200 mm, ffluidic = 51 mm; (f) overall focal length of the hybrid system for the green, red and blue wavelengths.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368326&req=5

g005: (a-e) Focal spots when the diffractive and fluidic lenses are combined to produce the best focus for the red and the blue lights. The focal length values at the green wavelength are: (a) fdiffractive = 1000 mm, ffluidic = 252 mm; (b) fdiffractive = 500 mm, ffluidic = 126 mm; (c) fdiffractive = 250 mm, ffluidic = 63 mm; (d) fdiffractive = 400 mm, ffluidic = 101 mm; (e) fdiffractive = 200 mm, ffluidic = 51 mm; (f) overall focal length of the hybrid system for the green, red and blue wavelengths.

Mentions: The final step in producing the variable focal length achromat is the combination of the liquid crystal diffractive lens with the pressure controlled methanol fluidic lens. After adjusting the focal lengths of each lens to the appropriate values dictated by the achromat equation we measured the overall focal length of the hybrid lens at the red, green, and blue wavelengths. The experiment verified that the focus spots of the red and blue wavelengths coincided very closely. Figure 5(a)Fig. 5


Adjustable hybrid diffractive/refractive achromatic lens.

Valley P, Savidis N, Schwiegerling J, Dodge MR, Peyman G, Peyghambarian N - Opt Express (2011)

(a-e) Focal spots when the diffractive and fluidic lenses are combined to produce the best focus for the red and the blue lights. The focal length values at the green wavelength are: (a) fdiffractive = 1000 mm, ffluidic = 252 mm; (b) fdiffractive = 500 mm, ffluidic = 126 mm; (c) fdiffractive = 250 mm, ffluidic = 63 mm; (d) fdiffractive = 400 mm, ffluidic = 101 mm; (e) fdiffractive = 200 mm, ffluidic = 51 mm; (f) overall focal length of the hybrid system for the green, red and blue wavelengths.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368326&req=5

g005: (a-e) Focal spots when the diffractive and fluidic lenses are combined to produce the best focus for the red and the blue lights. The focal length values at the green wavelength are: (a) fdiffractive = 1000 mm, ffluidic = 252 mm; (b) fdiffractive = 500 mm, ffluidic = 126 mm; (c) fdiffractive = 250 mm, ffluidic = 63 mm; (d) fdiffractive = 400 mm, ffluidic = 101 mm; (e) fdiffractive = 200 mm, ffluidic = 51 mm; (f) overall focal length of the hybrid system for the green, red and blue wavelengths.
Mentions: The final step in producing the variable focal length achromat is the combination of the liquid crystal diffractive lens with the pressure controlled methanol fluidic lens. After adjusting the focal lengths of each lens to the appropriate values dictated by the achromat equation we measured the overall focal length of the hybrid lens at the red, green, and blue wavelengths. The experiment verified that the focus spots of the red and blue wavelengths coincided very closely. Figure 5(a)Fig. 5

Bottom Line: Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens' focal position.Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths.Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats.

View Article: PubMed Central - PubMed

Affiliation: College of Optical Sciences, University of Arizona Tucson, Arizona 85721, USA. pouria@u.arizona.edu

Show MeSH
Related in: MedlinePlus