Limits...
Coping with brief periods of food restriction: mindfulness matters.

Paolini B, Burdette JH, Laurienti PJ, Morgan AR, Williamson DA, Rejeski WJ - Front Aging Neurosci (2012)

Bottom Line: We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period.This effect was stronger for the BOOST® than NO BOOST® treatment condition.Older adults low in trait mindfulness did not exhibit this pattern in the DMN.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Wake Forest University School of Medicine, Winston-Salem NC, USA.

ABSTRACT
The obesity epidemic had spawned considerable interest in understanding peoples' responses to palatable food cues that are plentiful in obesogenic environments. In this paper we examine how trait mindfulness of older, obese adults may moderate brain networks that arise from exposure to such cues. Nineteen older, obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h. After this brief period of food restriction, they had an fMRI scan in which they were exposed to food cues and then underwent a 5 min recovery period to evaluate brain networks at rest. On one day they consumed a BOOST® liquid meal prior to scanning, whereas on the other day they only consumed water (NO BOOST® condition). We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period. This effect was stronger for the BOOST® than NO BOOST® treatment condition. Older adults low in trait mindfulness did not exhibit this pattern in the DMN. In fact, the brain networks of those low on the MAAS suggests that they continued to be pre-occupied with the elaboration of food cues even after cue exposure had ended. Further work is needed to examine whether mindfulness-based therapies alter brain networks to food cues and whether these changes are related to eating behavior.

No MeSH data available.


Related in: MedlinePlus

K-core Maps by MAAS Category: Insula/Auditory Cortex. The regions that were consistently within the core of the network are depicted in these coronal and axial brain slices. The color-code indicates the % of subjects that had each region within their network core. Note the similarity with the regions that exhibited high global efficiency.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368241&req=5

Figure 4: K-core Maps by MAAS Category: Insula/Auditory Cortex. The regions that were consistently within the core of the network are depicted in these coronal and axial brain slices. The color-code indicates the % of subjects that had each region within their network core. Note the similarity with the regions that exhibited high global efficiency.

Mentions: The insula/auditory cortex also exhibited particular prominence in the network core of the low mindfulness group (Figure 4). Note the similarities in the spatial distribution of brain regions that were in the network core and exhibited high global efficiency. A further analysis of the magnitude of the network core was performed in the insula/auditory cortex. The ROI analysis demonstrated that there was a significant reduction in the magnitude of the core in the low mindfulness group following BOOST® (p = 0.05). Following BOOST®, the low mindfulness group had core values that were much closer to those of the high mindfulness group (Table 2). Although there was a small reduction in the core values in the BOOST® condition for the high mindfulness group, this change did not reach significance. While there are clear differences in the network core maps between groups, the means from the insula/auditory cortex did not reach significance, likely due to high variability.


Coping with brief periods of food restriction: mindfulness matters.

Paolini B, Burdette JH, Laurienti PJ, Morgan AR, Williamson DA, Rejeski WJ - Front Aging Neurosci (2012)

K-core Maps by MAAS Category: Insula/Auditory Cortex. The regions that were consistently within the core of the network are depicted in these coronal and axial brain slices. The color-code indicates the % of subjects that had each region within their network core. Note the similarity with the regions that exhibited high global efficiency.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368241&req=5

Figure 4: K-core Maps by MAAS Category: Insula/Auditory Cortex. The regions that were consistently within the core of the network are depicted in these coronal and axial brain slices. The color-code indicates the % of subjects that had each region within their network core. Note the similarity with the regions that exhibited high global efficiency.
Mentions: The insula/auditory cortex also exhibited particular prominence in the network core of the low mindfulness group (Figure 4). Note the similarities in the spatial distribution of brain regions that were in the network core and exhibited high global efficiency. A further analysis of the magnitude of the network core was performed in the insula/auditory cortex. The ROI analysis demonstrated that there was a significant reduction in the magnitude of the core in the low mindfulness group following BOOST® (p = 0.05). Following BOOST®, the low mindfulness group had core values that were much closer to those of the high mindfulness group (Table 2). Although there was a small reduction in the core values in the BOOST® condition for the high mindfulness group, this change did not reach significance. While there are clear differences in the network core maps between groups, the means from the insula/auditory cortex did not reach significance, likely due to high variability.

Bottom Line: We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period.This effect was stronger for the BOOST® than NO BOOST® treatment condition.Older adults low in trait mindfulness did not exhibit this pattern in the DMN.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Wake Forest University School of Medicine, Winston-Salem NC, USA.

ABSTRACT
The obesity epidemic had spawned considerable interest in understanding peoples' responses to palatable food cues that are plentiful in obesogenic environments. In this paper we examine how trait mindfulness of older, obese adults may moderate brain networks that arise from exposure to such cues. Nineteen older, obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h. After this brief period of food restriction, they had an fMRI scan in which they were exposed to food cues and then underwent a 5 min recovery period to evaluate brain networks at rest. On one day they consumed a BOOST® liquid meal prior to scanning, whereas on the other day they only consumed water (NO BOOST® condition). We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period. This effect was stronger for the BOOST® than NO BOOST® treatment condition. Older adults low in trait mindfulness did not exhibit this pattern in the DMN. In fact, the brain networks of those low on the MAAS suggests that they continued to be pre-occupied with the elaboration of food cues even after cue exposure had ended. Further work is needed to examine whether mindfulness-based therapies alter brain networks to food cues and whether these changes are related to eating behavior.

No MeSH data available.


Related in: MedlinePlus