Limits...
Coping with brief periods of food restriction: mindfulness matters.

Paolini B, Burdette JH, Laurienti PJ, Morgan AR, Williamson DA, Rejeski WJ - Front Aging Neurosci (2012)

Bottom Line: We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period.This effect was stronger for the BOOST® than NO BOOST® treatment condition.Older adults low in trait mindfulness did not exhibit this pattern in the DMN.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Wake Forest University School of Medicine, Winston-Salem NC, USA.

ABSTRACT
The obesity epidemic had spawned considerable interest in understanding peoples' responses to palatable food cues that are plentiful in obesogenic environments. In this paper we examine how trait mindfulness of older, obese adults may moderate brain networks that arise from exposure to such cues. Nineteen older, obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h. After this brief period of food restriction, they had an fMRI scan in which they were exposed to food cues and then underwent a 5 min recovery period to evaluate brain networks at rest. On one day they consumed a BOOST® liquid meal prior to scanning, whereas on the other day they only consumed water (NO BOOST® condition). We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period. This effect was stronger for the BOOST® than NO BOOST® treatment condition. Older adults low in trait mindfulness did not exhibit this pattern in the DMN. In fact, the brain networks of those low on the MAAS suggests that they continued to be pre-occupied with the elaboration of food cues even after cue exposure had ended. Further work is needed to examine whether mindfulness-based therapies alter brain networks to food cues and whether these changes are related to eating behavior.

No MeSH data available.


Related in: MedlinePlus

Global Efficiency Maps by MAAS Category: Precuneus. This figure shows a mid-saggital section of the brain for each group and condition. The regions that consistently exhibited high global efficiency across the study populations are color-coded according to % of the population. Note that the precuneus shows highest consistency in the High MAAS group following BOOST®. The Low MAAS group exhibited low consistency in this area regardless of condition.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368241&req=5

Figure 2: Global Efficiency Maps by MAAS Category: Precuneus. This figure shows a mid-saggital section of the brain for each group and condition. The regions that consistently exhibited high global efficiency across the study populations are color-coded according to % of the population. Note that the precuneus shows highest consistency in the High MAAS group following BOOST®. The Low MAAS group exhibited low consistency in this area regardless of condition.

Mentions: The high mindful group consistently had the highest global efficiency in the precuneus (Figure 2, Yellow circles), which is the primary hub of the resting brain (Hagmann et al., 2008; Moussa et al., 2011) and the primary component of the default mode network (DMN) (Raichle et al., 2001). An ROI analysis, see Table 2, revealed that these group differences were significant for the BOOST® (p = 0.02) and NO BOOST® (p = 0.04) conditions. An interesting trend suggests that the liquid meal replacement was effective in allowing the brains of High MAAS older adults to further solidify default-mode connectivity after exposure to food cues. This was not the case for the low mindful group, since they had low global efficiency in the precuneus during both the BOOST® and NO BOOST® conditions. Interestingly, in the NO BOOST® condition, the high mindful group had higher global efficiency in the precuneus than either condition for the low mindful group, albeit not as high as the high mindful group on BOOST®. Conversely, as shown in Figure 3, the low mindful group had the greatest global efficiency in the auditory and insular cortices. An ROI analysis revealed that global efficiency in the insula/auditory cortex was significantly greater in the Low MAAS group compared to the High MAAS group for BOOST® (p = 0.01) and NO BOOST® (p = 0.02) conditions. There was no significant effect of BOOST® on global efficiency in the insula/auditory cortex within study populations.


Coping with brief periods of food restriction: mindfulness matters.

Paolini B, Burdette JH, Laurienti PJ, Morgan AR, Williamson DA, Rejeski WJ - Front Aging Neurosci (2012)

Global Efficiency Maps by MAAS Category: Precuneus. This figure shows a mid-saggital section of the brain for each group and condition. The regions that consistently exhibited high global efficiency across the study populations are color-coded according to % of the population. Note that the precuneus shows highest consistency in the High MAAS group following BOOST®. The Low MAAS group exhibited low consistency in this area regardless of condition.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368241&req=5

Figure 2: Global Efficiency Maps by MAAS Category: Precuneus. This figure shows a mid-saggital section of the brain for each group and condition. The regions that consistently exhibited high global efficiency across the study populations are color-coded according to % of the population. Note that the precuneus shows highest consistency in the High MAAS group following BOOST®. The Low MAAS group exhibited low consistency in this area regardless of condition.
Mentions: The high mindful group consistently had the highest global efficiency in the precuneus (Figure 2, Yellow circles), which is the primary hub of the resting brain (Hagmann et al., 2008; Moussa et al., 2011) and the primary component of the default mode network (DMN) (Raichle et al., 2001). An ROI analysis, see Table 2, revealed that these group differences were significant for the BOOST® (p = 0.02) and NO BOOST® (p = 0.04) conditions. An interesting trend suggests that the liquid meal replacement was effective in allowing the brains of High MAAS older adults to further solidify default-mode connectivity after exposure to food cues. This was not the case for the low mindful group, since they had low global efficiency in the precuneus during both the BOOST® and NO BOOST® conditions. Interestingly, in the NO BOOST® condition, the high mindful group had higher global efficiency in the precuneus than either condition for the low mindful group, albeit not as high as the high mindful group on BOOST®. Conversely, as shown in Figure 3, the low mindful group had the greatest global efficiency in the auditory and insular cortices. An ROI analysis revealed that global efficiency in the insula/auditory cortex was significantly greater in the Low MAAS group compared to the High MAAS group for BOOST® (p = 0.01) and NO BOOST® (p = 0.02) conditions. There was no significant effect of BOOST® on global efficiency in the insula/auditory cortex within study populations.

Bottom Line: We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period.This effect was stronger for the BOOST® than NO BOOST® treatment condition.Older adults low in trait mindfulness did not exhibit this pattern in the DMN.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, Wake Forest University School of Medicine, Winston-Salem NC, USA.

ABSTRACT
The obesity epidemic had spawned considerable interest in understanding peoples' responses to palatable food cues that are plentiful in obesogenic environments. In this paper we examine how trait mindfulness of older, obese adults may moderate brain networks that arise from exposure to such cues. Nineteen older, obese adults came to our laboratory on two different occasions. Both times they ate a controlled breakfast meal and then were restricted from eating for 2.5 h. After this brief period of food restriction, they had an fMRI scan in which they were exposed to food cues and then underwent a 5 min recovery period to evaluate brain networks at rest. On one day they consumed a BOOST® liquid meal prior to scanning, whereas on the other day they only consumed water (NO BOOST® condition). We found that adults high in trait mindfulness were able to return to their default mode network (DMN), as indicated by greater global efficiency in the precuneus, during the post-exposure rest period. This effect was stronger for the BOOST® than NO BOOST® treatment condition. Older adults low in trait mindfulness did not exhibit this pattern in the DMN. In fact, the brain networks of those low on the MAAS suggests that they continued to be pre-occupied with the elaboration of food cues even after cue exposure had ended. Further work is needed to examine whether mindfulness-based therapies alter brain networks to food cues and whether these changes are related to eating behavior.

No MeSH data available.


Related in: MedlinePlus