Limits...
Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

Gao L, Kano N, Sato Y, Li C, Zhang S, Imaizumi H - Bioinorg Chem Appl (2012)

Bottom Line: In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil.In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals.Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.

ABSTRACT
In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

No MeSH data available.


One structure of saponin (15) and sophorolipid (16).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3368164&req=5

fig1: One structure of saponin (15) and sophorolipid (16).

Mentions: In this work two kinds of biosurfactants were used, saponin and sophorolipid. Saponin was purchased commercially from Sigma-Aldrich, Inc. (Germany). It is a nonionic biosurfactant but includes the carboxyl group (–COOH) as shown in Figure 1(a) based on the analysis of quillaja bark by Guo and Kenne [17]. Sophorolipid was supplied by State Key Laboratory for Microbial Technology (Shandong University, China). It is also a nonionic biosurfactant, and one possible structure of sophorolipid from Wickerhamiella domercqiae analyzed by Chen et al. is given in Figure 1(b) [18].


Behavior and distribution of heavy metals including rare Earth elements, thorium, and uranium in sludge from industry water treatment plant and recovery method of metals by biosurfactants application.

Gao L, Kano N, Sato Y, Li C, Zhang S, Imaizumi H - Bioinorg Chem Appl (2012)

One structure of saponin (15) and sophorolipid (16).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3368164&req=5

fig1: One structure of saponin (15) and sophorolipid (16).
Mentions: In this work two kinds of biosurfactants were used, saponin and sophorolipid. Saponin was purchased commercially from Sigma-Aldrich, Inc. (Germany). It is a nonionic biosurfactant but includes the carboxyl group (–COOH) as shown in Figure 1(a) based on the analysis of quillaja bark by Guo and Kenne [17]. Sophorolipid was supplied by State Key Laboratory for Microbial Technology (Shandong University, China). It is also a nonionic biosurfactant, and one possible structure of sophorolipid from Wickerhamiella domercqiae analyzed by Chen et al. is given in Figure 1(b) [18].

Bottom Line: In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil.In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals.Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

View Article: PubMed Central - PubMed

Affiliation: Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.

ABSTRACT
In order to investigate the behavior, distribution, and characteristics of heavy metals including rare earth elements (REEs), thorium (Th), and uranium (U) in sludge, the total and fractional concentrations of these elements in sludge collected from an industry water treatment plant were determined and compared with those in natural soil. In addition, the removal/recovery process of heavy metals (Pb, Cr, and Ni) from the polluted sludge was studied with biosurfactant (saponin and sophorolipid) elution by batch and column experiments to evaluate the efficiency of biosurfactant for the removal of heavy metals. Consequently, the following matters have been largely clarified. (1) Heavy metallic elements in sludge have generally larger concentrations and exist as more unstable fraction than those in natural soil. (2) Nonionic saponin including carboxyl group is more efficient than sophorolipid for the removal of heavy metals in polluted sludge. Saponin has selectivity for the mobilization of heavy metals and mainly reacts with heavy metals in F3 (the fraction bound to carbonates) and F5 (the fraction bound to Fe-Mn oxides). (3) The recovery efficiency of heavy metals (Pb, Ni, and Cr) reached about 90-100% using a precipitation method with alkaline solution.

No MeSH data available.