Limits...
Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response.

Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM, O'Mahony L, Shanahan F - Clin Transl Gastroenterol (2012)

Bottom Line: Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05).Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection.B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.

View Article: PubMed Central - PubMed

Affiliation: Alimentary Pharmabiotic Centre, National University Ireland, Cork, Ireland.

ABSTRACT

Objectives: Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage.

Methods: BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (10(2)-10(8) colony-forming unit (CFU)) and durations (10(6) CFU for 1-6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (10(6) CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase-isomaltase, maltase, and alkaline phosphatase.

Results: S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge.

Conclusions: Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.

No MeSH data available.


Related in: MedlinePlus

mRNA expression of cytokines and chemokines in the jejunum of non-infected mice (white column), and S. Typhimurium UK1-infected mice at day 1 (light gray), day 3 (striped) and day 6 (dark gray). Data are mean±s.e., with values expressed relative to non-infected values. *P<0.05 compared with control values. N=5 per group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3367613&req=5

fig3: mRNA expression of cytokines and chemokines in the jejunum of non-infected mice (white column), and S. Typhimurium UK1-infected mice at day 1 (light gray), day 3 (striped) and day 6 (dark gray). Data are mean±s.e., with values expressed relative to non-infected values. *P<0.05 compared with control values. N=5 per group.

Mentions: Infection with Salmonella increased IL-10, KC, interferon-γ, and transforming growth factor-β mRNA expression, with most peaking by day 1 post-infection and remaining elevated (P<0.05; Figure 3). There were slight increases in TNF-α and IL-1β expression; however, these did not reach statistical significance (P>0.05; Figure 3).


Bifidobacterium infantis 35624 protects against salmonella-induced reductions in digestive enzyme activity in mice by attenuation of the host inflammatory response.

Symonds EL, O'Mahony C, Lapthorne S, O'Mahony D, Sharry JM, O'Mahony L, Shanahan F - Clin Transl Gastroenterol (2012)

mRNA expression of cytokines and chemokines in the jejunum of non-infected mice (white column), and S. Typhimurium UK1-infected mice at day 1 (light gray), day 3 (striped) and day 6 (dark gray). Data are mean±s.e., with values expressed relative to non-infected values. *P<0.05 compared with control values. N=5 per group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3367613&req=5

fig3: mRNA expression of cytokines and chemokines in the jejunum of non-infected mice (white column), and S. Typhimurium UK1-infected mice at day 1 (light gray), day 3 (striped) and day 6 (dark gray). Data are mean±s.e., with values expressed relative to non-infected values. *P<0.05 compared with control values. N=5 per group.
Mentions: Infection with Salmonella increased IL-10, KC, interferon-γ, and transforming growth factor-β mRNA expression, with most peaking by day 1 post-infection and remaining elevated (P<0.05; Figure 3). There were slight increases in TNF-α and IL-1β expression; however, these did not reach statistical significance (P>0.05; Figure 3).

Bottom Line: Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05).Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection.B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.

View Article: PubMed Central - PubMed

Affiliation: Alimentary Pharmabiotic Centre, National University Ireland, Cork, Ireland.

ABSTRACT

Objectives: Salmonella-induced damage to the small intestine may decrease the villi-associated enzyme activity, causing malabsorption of nutrients and diarrhea, and thus contribute to the symptoms of infection. The objective of this study was to determine the mechanism by which different doses and durations of Salmonella infection and lipopolysaccharide (LPS) affect brush border enzyme activity in the mouse, and to determine if the probiotic Bifidobacterium longum subspecies infantis 35624 could attenuate the intestinal damage.

Methods: BALB/c mice were challenged with Salmonella enterica serovar Typhimurium UK1 at various doses (10(2)-10(8) colony-forming unit (CFU)) and durations (10(6) CFU for 1-6 days). Mice were also treated with B. longum subsp. infantis 35624 for 2 weeks before and during a 6-day S. Typhimurium challenge (10(6) CFU), or before injection of LPS. The small intestine was assessed for morphological changes, mRNA expression of cytokines, and activity of the brush border enzymes sucrase-isomaltase, maltase, and alkaline phosphatase.

Results: S. Typhimurium infection significantly reduced the activity of all brush border enzymes in a dose- and time-dependent manner (P<0.05). This also occurred following injection of LPS. Pre-treatment with B. longum subsp. infantis 35624 prevented weight loss, protected brush border enzyme activity, reduced the small intestinal damage, and inhibited the increase in interleukin (IL)-10 and IL-8 expression due to Salmonella challenge.

Conclusions: Salmonella infection reduces the small intestinal brush border enzyme activity in mice, with the level of reduction and associated weight loss increasing with dose and duration of infection. B. longum subsp. infantis 35624 treatment attenuated the effect of Salmonella infection on brush border enzyme activity and weight loss, which may be due to modulation of the host immune response.

No MeSH data available.


Related in: MedlinePlus