Limits...
T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions.

Verbrugghe E, Vandenbroucke V, Dhaenens M, Shearer N, Goossens J, De Saeger S, Eeckhout M, D'Herde K, Thompson A, Deforce D, Boyen F, Leyman B, Van Parys A, De Backer P, Haesebrouck F, Croubels S, Pasmans F - Vet. Res. (2012)

Bottom Line: We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed.Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes.This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium. Elin.verbrugghe@ugent.be.

ABSTRACT
The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL) affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL) promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL) promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

Show MeSH

Related in: MedlinePlus

The effect of T-2 toxin on the cell viability. Percentage viability (%) of Salmonella Typhimurium infected and uninfected (A) PAM exposed to different concentrations of T-2 toxin (0.250-10 ng/mL), (B) undifferentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-10 ng/mL), (C) differentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-100 ng/mL). Twenty-four hours after incubation with T-2 toxin, the cytotoxic effect was determined by neutral red assay. Results represent the means of 3 independent experiments conducted in triplicate and their standard deviation. Superscript (*) refers to a significant difference compared to the control group (p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3362764&req=5

Figure 3: The effect of T-2 toxin on the cell viability. Percentage viability (%) of Salmonella Typhimurium infected and uninfected (A) PAM exposed to different concentrations of T-2 toxin (0.250-10 ng/mL), (B) undifferentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-10 ng/mL), (C) differentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-100 ng/mL). Twenty-four hours after incubation with T-2 toxin, the cytotoxic effect was determined by neutral red assay. Results represent the means of 3 independent experiments conducted in triplicate and their standard deviation. Superscript (*) refers to a significant difference compared to the control group (p < 0.05).

Mentions: The cytotoxic effect of T-2 toxin on PAM, undifferentiated and differentiated IPEC-J2 cells as determined using the neutral red assay, is shown in Figure 3. The viability of both uninfected and infected PAM, undifferentiated and differentiated IPEC-J2 cells was significantly decreased by exposure to concentrations of T-2 toxin ≥ 1 ng/mL, ≥ 2.5 ng/mL and ≥ 15 ng/mL, respectively. IC50 values of T-2 toxin for the different cell types were determined by linear regression and are presented in Table 2.


T-2 toxin induced Salmonella Typhimurium intoxication results in decreased Salmonella numbers in the cecum contents of pigs, despite marked effects on Salmonella-host cell interactions.

Verbrugghe E, Vandenbroucke V, Dhaenens M, Shearer N, Goossens J, De Saeger S, Eeckhout M, D'Herde K, Thompson A, Deforce D, Boyen F, Leyman B, Van Parys A, De Backer P, Haesebrouck F, Croubels S, Pasmans F - Vet. Res. (2012)

The effect of T-2 toxin on the cell viability. Percentage viability (%) of Salmonella Typhimurium infected and uninfected (A) PAM exposed to different concentrations of T-2 toxin (0.250-10 ng/mL), (B) undifferentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-10 ng/mL), (C) differentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-100 ng/mL). Twenty-four hours after incubation with T-2 toxin, the cytotoxic effect was determined by neutral red assay. Results represent the means of 3 independent experiments conducted in triplicate and their standard deviation. Superscript (*) refers to a significant difference compared to the control group (p < 0.05).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3362764&req=5

Figure 3: The effect of T-2 toxin on the cell viability. Percentage viability (%) of Salmonella Typhimurium infected and uninfected (A) PAM exposed to different concentrations of T-2 toxin (0.250-10 ng/mL), (B) undifferentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-10 ng/mL), (C) differentiated IPEC-J2 cells exposed to different concentrations of T-2 toxin (0.500-100 ng/mL). Twenty-four hours after incubation with T-2 toxin, the cytotoxic effect was determined by neutral red assay. Results represent the means of 3 independent experiments conducted in triplicate and their standard deviation. Superscript (*) refers to a significant difference compared to the control group (p < 0.05).
Mentions: The cytotoxic effect of T-2 toxin on PAM, undifferentiated and differentiated IPEC-J2 cells as determined using the neutral red assay, is shown in Figure 3. The viability of both uninfected and infected PAM, undifferentiated and differentiated IPEC-J2 cells was significantly decreased by exposure to concentrations of T-2 toxin ≥ 1 ng/mL, ≥ 2.5 ng/mL and ≥ 15 ng/mL, respectively. IC50 values of T-2 toxin for the different cell types were determined by linear regression and are presented in Table 2.

Bottom Line: We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed.Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes.This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium. Elin.verbrugghe@ugent.be.

ABSTRACT
The mycotoxin T-2 toxin and Salmonella Typhimurium infections pose a significant threat to human and animal health. Interactions between both agents may result in a different outcome of the infection. Therefore, the aim of the presented study was to investigate the effects of low and relevant concentrations of T-2 toxin on the course of a Salmonella Typhimurium infection in pigs. We showed that the presence of 15 and 83 μg T-2 toxin per kg feed significantly decreased the amount of Salmonella Typhimurium bacteria present in the cecum contents, and a tendency to a reduced colonization of the jejunum, ileum, cecum, colon and colon contents was noticed. In vitro, proteomic analysis of porcine enterocytes revealed that a very low concentration of T-2 toxin (5 ng/mL) affects the protein expression of mitochondrial, endoplasmatic reticulum and cytoskeleton associated proteins, proteins involved in protein synthesis and folding, RNA synthesis, mitogen-activated protein kinase signaling and regulatory processes. Similarly low concentrations (1-100 ng/mL) promoted the susceptibility of porcine macrophages and intestinal epithelial cells to Salmonella Typhimurium invasion, in a SPI-1 independent manner. Furthermore, T-2 toxin (1-5 ng/mL) promoted the translocation of Salmonella Typhimurium over an intestinal porcine epithelial cell monolayer. Although these findings may seem in favour of Salmonella Typhimurium, microarray analysis showed that T-2 toxin (5 ng/mL) causes an intoxication of Salmonella Typhimurium, represented by a reduced motility and a downregulation of metabolic and Salmonella Pathogenicity Island 1 genes. This study demonstrates marked interactions of T-2 toxin with Salmonella Typhimurium pathogenesis, resulting in bacterial intoxication.

Show MeSH
Related in: MedlinePlus