Limits...
Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima.

Jarouliya U, Zacharia JA, Kumar P, Bisen PS, Prasad GB - Indian J. Med. Res. (2012)

Bottom Line: The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration.Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract.Further studies are needed to understand the mechanisms.

View Article: PubMed Central - PubMed

Affiliation: School of Studies in Biochemistry & Biotechnology, Jiwaji University, Gwalior, India.

ABSTRACT

Background & objectives: Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats.

Methods: Oral administration of 10 per cent fructose solution to Wistar rats (n = 5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration.

Results: Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats.

Interpretation & conclusions: The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

Show MeSH

Related in: MedlinePlus

Effects of S. maxima administration on serum glutamate pyruvate transaminase (SGPT) activity. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3361882&req=5

Figure 6: Effects of S. maxima administration on serum glutamate pyruvate transaminase (SGPT) activity. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.

Mentions: Effect of S. maxima administration on liver function markers: Analysis of liver function markers viz., SGPT and SGOT activities were significantly (P<0.05) increased in fructose fed rats. Administration of 5 per cent S. maxima to experimental rats reduced the SGPT activity by 24.78 per cent (Fig. 6) and SGOT activity by 33.42 per cent of pre-treatment levels (Fig. 7). While concurrent administration of 5 per cent S. maxima and 10 per cent fructose reduced the SGPT and SGOT activities by 16.01 and 29.19 per cent, respectively compared to diabetic control group. Administration of 10 per cent S. maxima suspension to experimental rats reduced SGPT activity by 29 per cent (P<0.05) (Fig. 6) and SGOT activity by 33.57 per cent of pre-treatment levels respectively (Fig. 7). Treatment of experimental rats with metformin (500 mg/kg) reduced the SGPT and SGOT activities by 14.44 and 19.60 per cent of pre-treatment levels, respectively.


Alleviation of metabolic abnormalities induced by excessive fructose administration in Wistar rats by Spirulina maxima.

Jarouliya U, Zacharia JA, Kumar P, Bisen PS, Prasad GB - Indian J. Med. Res. (2012)

Effects of S. maxima administration on serum glutamate pyruvate transaminase (SGPT) activity. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3361882&req=5

Figure 6: Effects of S. maxima administration on serum glutamate pyruvate transaminase (SGPT) activity. SM, Spirulina maxima; CF, continuous fructose. The values expressed as mean ± SE, n=5. P*<0.05, **<0.001 compared to NC group.
Mentions: Effect of S. maxima administration on liver function markers: Analysis of liver function markers viz., SGPT and SGOT activities were significantly (P<0.05) increased in fructose fed rats. Administration of 5 per cent S. maxima to experimental rats reduced the SGPT activity by 24.78 per cent (Fig. 6) and SGOT activity by 33.42 per cent of pre-treatment levels (Fig. 7). While concurrent administration of 5 per cent S. maxima and 10 per cent fructose reduced the SGPT and SGOT activities by 16.01 and 29.19 per cent, respectively compared to diabetic control group. Administration of 10 per cent S. maxima suspension to experimental rats reduced SGPT activity by 29 per cent (P<0.05) (Fig. 6) and SGOT activity by 33.57 per cent of pre-treatment levels respectively (Fig. 7). Treatment of experimental rats with metformin (500 mg/kg) reduced the SGPT and SGOT activities by 14.44 and 19.60 per cent of pre-treatment levels, respectively.

Bottom Line: The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration.Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract.Further studies are needed to understand the mechanisms.

View Article: PubMed Central - PubMed

Affiliation: School of Studies in Biochemistry & Biotechnology, Jiwaji University, Gwalior, India.

ABSTRACT

Background & objectives: Diabetes mellitus is a metabolic disorder characterized by hyperglycaemia. Several natural products have been isolated and identified to restore the complications of diabetes. Spirulina maxima is naturally occurring fresh water cyanobacterium, enriched with proteins and essential nutrients. The aim of the study was to determine whether S. maxima could serve as a therapeutic agent to correct metabolic abnormalities induced by excessive fructose administration in Wistar rats.

Methods: Oral administration of 10 per cent fructose solution to Wistar rats (n = 5 in each group) for 30 days resulted in hyperglycaemia and hyperlipidaemia. Aqueous suspension of S. maxima (5 or 10%) was also administered orally once daily for 30 days. The therapeutic potential of the preparation with reference to metformin (500 mg/kg) was assessed by monitoring various biochemical parameters at 10 day intervals during the course of therapy and at the end of 30 days S. maxima administration.

Results: Significant (P<0.001) reductions in blood glucose, lipid profile (triglycerides, cholesterol and LDL, VLDL) and liver function markers (SGPT and SGOT) were recorded along with elevated level of HDL-C at the end of 30 days therapy of 5 or 10 per cent S. maxima aquous extract. Co-administration of S. maxima extract (5 or 10% aqueous) with 10 per cent fructose solution offered a significant protection against fructose induced metabolic abnormalities in Wistar rats.

Interpretation & conclusions: The present findings showed that S. maxima exhibited anti-hyperglycaemic, anti-hyperlipidaemic and hepatoprotective activity in rats fed with fructose. Further studies are needed to understand the mechanisms.

Show MeSH
Related in: MedlinePlus