Limits...
Meditation increases the depth of information processing and improves the allocation of attention in space.

van Leeuwen S, Singer W, Melloni L - Front Hum Neurosci (2012)

Bottom Line: Specifically, we investigated the effect of attentional training on the global precedence effect, i.e., faster detection of targets on a global than on a local level.Analysis of reaction times confirmed this prediction.In contrast with control group, which showed a local target selection effect only in the P1 and a global target selection effect in the P3 component, meditators showed effects of local information processing in the P1, N2, and P3 and of global processing for the N1, N2, and P3.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurophysiology, Max Planck Institute for Brain Research Frankfurt am Main, Germany.

ABSTRACT
During meditation, practitioners are required to center their attention on a specific object for extended periods of time. When their thoughts get diverted, they learn to quickly disengage from the distracter. We hypothesized that learning to respond to the dual demand of engaging attention on specific objects and disengaging quickly from distracters enhances the efficiency by which meditation practitioners can allocate attention. We tested this hypothesis in a global-to-local task while measuring electroencephalographic activity from a group of eight highly trained Buddhist monks and nuns and a group of eight age and education matched controls with no previous meditation experience. Specifically, we investigated the effect of attentional training on the global precedence effect, i.e., faster detection of targets on a global than on a local level. We expected to find a reduced global precedence effect in meditation practitioners but not in controls, reflecting that meditators can more quickly disengage their attention from the dominant global level. Analysis of reaction times confirmed this prediction. To investigate the underlying changes in brain activity and their time course, we analyzed event-related potentials. Meditators showed an enhanced ability to select the respective target level, as reflected by enhanced processing of target level information. In contrast with control group, which showed a local target selection effect only in the P1 and a global target selection effect in the P3 component, meditators showed effects of local information processing in the P1, N2, and P3 and of global processing for the N1, N2, and P3. Thus, meditators seem to display enhanced depth of processing. In addition, meditation altered the uptake of information such that meditators selected target level information earlier in the processing sequence than controls. In a longitudinal experiment, we could replicate the behavioral effects, suggesting that meditation modulates attention already after a 4-day meditation retreat. Together, these results suggest that practicing meditation enhances the speed with which attention can be allocated and relocated, thus increasing the depth of information processing and reducing response latency.

No MeSH data available.


Brain behavior correlations. This figure shows the pearson correlation between the amount of precedence in the average RT and the amount of precedence in ERP amplitude, per subject. Precedence is measured by the reaction time or amplitude for local targets minus the reaction time or amplitude for global targets. (A) Shows a significant negative correlation between precedence in the ERP and precedence in RT between 60 and 85 ms. (B) Shows a significant negative correlation between 380 and 400 ms. As precedence in the reaction time decreases, precedence in the amplitude of the ERP increases.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3351800&req=5

Figure 8: Brain behavior correlations. This figure shows the pearson correlation between the amount of precedence in the average RT and the amount of precedence in ERP amplitude, per subject. Precedence is measured by the reaction time or amplitude for local targets minus the reaction time or amplitude for global targets. (A) Shows a significant negative correlation between precedence in the ERP and precedence in RT between 60 and 85 ms. (B) Shows a significant negative correlation between 380 and 400 ms. As precedence in the reaction time decreases, precedence in the amplitude of the ERP increases.

Mentions: We found a significant correlation between the degree of global/local differences in the reaction times and the degree of global/local differences in ERP amplitudes at 60–85 ms over frontal electrodes (R = −0.576, p = 0.02) and again at 380–480 ms over centroparietal electrodes (R = −0.644, p = 0.007). Those subjects with a smaller “global precedence effect” in the reaction time data also had larger amplitude increases for local targets relative to global targets at 60–85 and 380–480 ms. This was not the case for any of the other time windows (p > 0.05; Figure 8).


Meditation increases the depth of information processing and improves the allocation of attention in space.

van Leeuwen S, Singer W, Melloni L - Front Hum Neurosci (2012)

Brain behavior correlations. This figure shows the pearson correlation between the amount of precedence in the average RT and the amount of precedence in ERP amplitude, per subject. Precedence is measured by the reaction time or amplitude for local targets minus the reaction time or amplitude for global targets. (A) Shows a significant negative correlation between precedence in the ERP and precedence in RT between 60 and 85 ms. (B) Shows a significant negative correlation between 380 and 400 ms. As precedence in the reaction time decreases, precedence in the amplitude of the ERP increases.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3351800&req=5

Figure 8: Brain behavior correlations. This figure shows the pearson correlation between the amount of precedence in the average RT and the amount of precedence in ERP amplitude, per subject. Precedence is measured by the reaction time or amplitude for local targets minus the reaction time or amplitude for global targets. (A) Shows a significant negative correlation between precedence in the ERP and precedence in RT between 60 and 85 ms. (B) Shows a significant negative correlation between 380 and 400 ms. As precedence in the reaction time decreases, precedence in the amplitude of the ERP increases.
Mentions: We found a significant correlation between the degree of global/local differences in the reaction times and the degree of global/local differences in ERP amplitudes at 60–85 ms over frontal electrodes (R = −0.576, p = 0.02) and again at 380–480 ms over centroparietal electrodes (R = −0.644, p = 0.007). Those subjects with a smaller “global precedence effect” in the reaction time data also had larger amplitude increases for local targets relative to global targets at 60–85 and 380–480 ms. This was not the case for any of the other time windows (p > 0.05; Figure 8).

Bottom Line: Specifically, we investigated the effect of attentional training on the global precedence effect, i.e., faster detection of targets on a global than on a local level.Analysis of reaction times confirmed this prediction.In contrast with control group, which showed a local target selection effect only in the P1 and a global target selection effect in the P3 component, meditators showed effects of local information processing in the P1, N2, and P3 and of global processing for the N1, N2, and P3.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurophysiology, Max Planck Institute for Brain Research Frankfurt am Main, Germany.

ABSTRACT
During meditation, practitioners are required to center their attention on a specific object for extended periods of time. When their thoughts get diverted, they learn to quickly disengage from the distracter. We hypothesized that learning to respond to the dual demand of engaging attention on specific objects and disengaging quickly from distracters enhances the efficiency by which meditation practitioners can allocate attention. We tested this hypothesis in a global-to-local task while measuring electroencephalographic activity from a group of eight highly trained Buddhist monks and nuns and a group of eight age and education matched controls with no previous meditation experience. Specifically, we investigated the effect of attentional training on the global precedence effect, i.e., faster detection of targets on a global than on a local level. We expected to find a reduced global precedence effect in meditation practitioners but not in controls, reflecting that meditators can more quickly disengage their attention from the dominant global level. Analysis of reaction times confirmed this prediction. To investigate the underlying changes in brain activity and their time course, we analyzed event-related potentials. Meditators showed an enhanced ability to select the respective target level, as reflected by enhanced processing of target level information. In contrast with control group, which showed a local target selection effect only in the P1 and a global target selection effect in the P3 component, meditators showed effects of local information processing in the P1, N2, and P3 and of global processing for the N1, N2, and P3. Thus, meditators seem to display enhanced depth of processing. In addition, meditation altered the uptake of information such that meditators selected target level information earlier in the processing sequence than controls. In a longitudinal experiment, we could replicate the behavioral effects, suggesting that meditation modulates attention already after a 4-day meditation retreat. Together, these results suggest that practicing meditation enhances the speed with which attention can be allocated and relocated, thus increasing the depth of information processing and reducing response latency.

No MeSH data available.