Limits...
Liposarcoma Cells with Aldefluor and CD133 Activity have a Cancer Stem Cell Potential.

Stratford EW, Castro R, Wennerstrom A, Holm R, Munthe E, Lauvrak S, Bjerkehagen B, Myklebost O - Clin Sarcoma Res (2011)

Bottom Line: Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types.Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium.This potential CSC population, which makes up for 0,1-1,7 % of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types. The primary goals of this study were to investigate whether ALDH is expressed in liposarcomas, and whether CSCs can be identified in the ALDHhigh subpopulation. We have demonstrated that ALDH is indeed expressed in 10 out of 10 liposarcoma patient samples. Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium. This potential CSC population, which makes up for 0,1-1,7 % of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.

No MeSH data available.


Related in: MedlinePlus

Flow cytometry and purity testing of sorted fractions. (A) Viable, single, human (TRA-1-85+) SW872 xenograft-derived cells (98, 8%) were sorted on the basis of (B) Aldefluor (X-axis) and CD133 (Y-axis) activity. In this representative experiment the subpopulations in the culture were as follows: 79% Aldefluorlow CD133low, 6% Aldefluorlow CD133high, 14% Aldefluorhigh CD133low and 0, 9% Aldefluorhigh CD133high. The 4 flow sorted subpopulations were subject to subsequent purity testing: (C) Aldefluorhigh CD133high: 33% pure, (D) Aldefluorhigh CD133low: 71% pure and containing 0, 3% potential CSCs (E) Aldefluorlow CD133high: 55% pure and (F) Aldefluorlow CD133low: 96% pure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3351708&req=5

Figure 5: Flow cytometry and purity testing of sorted fractions. (A) Viable, single, human (TRA-1-85+) SW872 xenograft-derived cells (98, 8%) were sorted on the basis of (B) Aldefluor (X-axis) and CD133 (Y-axis) activity. In this representative experiment the subpopulations in the culture were as follows: 79% Aldefluorlow CD133low, 6% Aldefluorlow CD133high, 14% Aldefluorhigh CD133low and 0, 9% Aldefluorhigh CD133high. The 4 flow sorted subpopulations were subject to subsequent purity testing: (C) Aldefluorhigh CD133high: 33% pure, (D) Aldefluorhigh CD133low: 71% pure and containing 0, 3% potential CSCs (E) Aldefluorlow CD133high: 55% pure and (F) Aldefluorlow CD133low: 96% pure.

Mentions: The functional analysis of the sorted subpopulations of SW872 cells demonstrated that the Aldefluorhigh CD133high cells had a highly increased ability to form spheroids in soft agar, indicating that these cells have an increased ability to self-renew compared to the other sorted cell populations. Interestingly, the Aldefluorhigh CD133high cells had higher capacity to differentiate into adipocytes. Whether the Aldefluorhigh CD133high cells have multi-lineage potential was not tested. However, since the Aldefluorhigh CD133high CSC is likely to originate from a MSC, it would be interesting to investigate the ability of these cells to differentiate into other mesenchymal cell types, such as osteoblasts and chondrocytes. Our in vivo tumourigenicity assay showed that the Aldefluorhigh CD133high subpopulation overall generated tumors more efficiently compared to the other subpopulations when injected subcutaneously into nude mice, in particular at low cell numbers. However, at higher cell numbers tumors were also generated by some of the other subpopulations. Re-analyses of each isolated subpopulation was done by a second round of flow cytometry to determine the purity of the isolated fractions. As demonstrated in Figure 5, the Aldefluorhigh CD133high subpopulation was only enriched to 33% purity, with a large percentage of tumour cells from the other subpopulations "diluting" the CSC population. The AldefluorhighCD133low flow sorted subpopulations was clearly "contaminated" with a few Aldefluorhigh CD133high cells, which likely contributed to tumour formation at high cell numbers. The purity of the flow sorting may be compromised by variability in expression and staining, but also by inherent "noise" in the flow sorter. The fact that the Aldefluorhigh CD133high cell population is only enriched also partly explains why tumors are not formed in all Aldefluorhigh CD133high injections. Furthermore, when separating the cells into subpopulations, the CSCs may lack the support of cells that are required to make up a "niche" in vivo.


Liposarcoma Cells with Aldefluor and CD133 Activity have a Cancer Stem Cell Potential.

Stratford EW, Castro R, Wennerstrom A, Holm R, Munthe E, Lauvrak S, Bjerkehagen B, Myklebost O - Clin Sarcoma Res (2011)

Flow cytometry and purity testing of sorted fractions. (A) Viable, single, human (TRA-1-85+) SW872 xenograft-derived cells (98, 8%) were sorted on the basis of (B) Aldefluor (X-axis) and CD133 (Y-axis) activity. In this representative experiment the subpopulations in the culture were as follows: 79% Aldefluorlow CD133low, 6% Aldefluorlow CD133high, 14% Aldefluorhigh CD133low and 0, 9% Aldefluorhigh CD133high. The 4 flow sorted subpopulations were subject to subsequent purity testing: (C) Aldefluorhigh CD133high: 33% pure, (D) Aldefluorhigh CD133low: 71% pure and containing 0, 3% potential CSCs (E) Aldefluorlow CD133high: 55% pure and (F) Aldefluorlow CD133low: 96% pure.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3351708&req=5

Figure 5: Flow cytometry and purity testing of sorted fractions. (A) Viable, single, human (TRA-1-85+) SW872 xenograft-derived cells (98, 8%) were sorted on the basis of (B) Aldefluor (X-axis) and CD133 (Y-axis) activity. In this representative experiment the subpopulations in the culture were as follows: 79% Aldefluorlow CD133low, 6% Aldefluorlow CD133high, 14% Aldefluorhigh CD133low and 0, 9% Aldefluorhigh CD133high. The 4 flow sorted subpopulations were subject to subsequent purity testing: (C) Aldefluorhigh CD133high: 33% pure, (D) Aldefluorhigh CD133low: 71% pure and containing 0, 3% potential CSCs (E) Aldefluorlow CD133high: 55% pure and (F) Aldefluorlow CD133low: 96% pure.
Mentions: The functional analysis of the sorted subpopulations of SW872 cells demonstrated that the Aldefluorhigh CD133high cells had a highly increased ability to form spheroids in soft agar, indicating that these cells have an increased ability to self-renew compared to the other sorted cell populations. Interestingly, the Aldefluorhigh CD133high cells had higher capacity to differentiate into adipocytes. Whether the Aldefluorhigh CD133high cells have multi-lineage potential was not tested. However, since the Aldefluorhigh CD133high CSC is likely to originate from a MSC, it would be interesting to investigate the ability of these cells to differentiate into other mesenchymal cell types, such as osteoblasts and chondrocytes. Our in vivo tumourigenicity assay showed that the Aldefluorhigh CD133high subpopulation overall generated tumors more efficiently compared to the other subpopulations when injected subcutaneously into nude mice, in particular at low cell numbers. However, at higher cell numbers tumors were also generated by some of the other subpopulations. Re-analyses of each isolated subpopulation was done by a second round of flow cytometry to determine the purity of the isolated fractions. As demonstrated in Figure 5, the Aldefluorhigh CD133high subpopulation was only enriched to 33% purity, with a large percentage of tumour cells from the other subpopulations "diluting" the CSC population. The AldefluorhighCD133low flow sorted subpopulations was clearly "contaminated" with a few Aldefluorhigh CD133high cells, which likely contributed to tumour formation at high cell numbers. The purity of the flow sorting may be compromised by variability in expression and staining, but also by inherent "noise" in the flow sorter. The fact that the Aldefluorhigh CD133high cell population is only enriched also partly explains why tumors are not formed in all Aldefluorhigh CD133high injections. Furthermore, when separating the cells into subpopulations, the CSCs may lack the support of cells that are required to make up a "niche" in vivo.

Bottom Line: Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types.Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium.This potential CSC population, which makes up for 0,1-1,7 % of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.

View Article: PubMed Central - HTML - PubMed

ABSTRACT
Aldehyde dehydrogenase (ALDH) has recently been shown to be a marker of cancer stem-like cells (CSCs) across tumour types. The primary goals of this study were to investigate whether ALDH is expressed in liposarcomas, and whether CSCs can be identified in the ALDHhigh subpopulation. We have demonstrated that ALDH is indeed expressed in 10 out of 10 liposarcoma patient samples. Using a liposarcoma xenograft model, we have identified a small population of cells with an inducible stem cell potential, expressing both ALDH and CD133 following culturing in stem cell medium. This potential CSC population, which makes up for 0,1-1,7 % of the cells, displayed increased self-renewing abilities and increased tumourigenicity, giving tumours in vivo from as few as 100 injected cells.

No MeSH data available.


Related in: MedlinePlus