Limits...
Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

Vimmerstedt LJ, Bush B, Peterson S - PLoS ONE (2012)

Bottom Line: The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain.A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously.Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

View Article: PubMed Central - PubMed

Affiliation: National Renewable Energy Laboratory, Strategic Energy Analysis Center, Golden, Colorado, United States of America. laura.vimmerstedt@nrel.gov

ABSTRACT
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Show MeSH
Vehicle scenarios.The figure shows maximum potential ethanol consumption and simulated actual ethanol consumption results for all years under different vehicle scenarios. The Cash for Clunkers ramp scenario (CFC Ramp) increases the rates of retirement of old vehicles and purchase of new vehicles. The flex-fuel vehicles doubling scenario (FFVs 2×) shows ethanol consumption if the share of purchases of FFVs in each time period is assumed to double compared to the base case rate for that period, insofar as possible. FFV penetration alone does not achieve higher ethanol use, but it does lift the maximum potential ethanol consumption and enable higher levels of use when other conditions are favorable.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351488&req=5

pone-0035082-g008: Vehicle scenarios.The figure shows maximum potential ethanol consumption and simulated actual ethanol consumption results for all years under different vehicle scenarios. The Cash for Clunkers ramp scenario (CFC Ramp) increases the rates of retirement of old vehicles and purchase of new vehicles. The flex-fuel vehicles doubling scenario (FFVs 2×) shows ethanol consumption if the share of purchases of FFVs in each time period is assumed to double compared to the base case rate for that period, insofar as possible. FFV penetration alone does not achieve higher ethanol use, but it does lift the maximum potential ethanol consumption and enable higher levels of use when other conditions are favorable.

Mentions: We explored effects of changes in the base model inputs and assumptions through a series of sensitivity analyses. The sensitivity cases included modifications to assumptions about market actor behaviors, input data about various costs, and vehicle scenario inputs. In Figure 8, we show the effect of different vehicle scenarios on potential and simulated actual ethanol consumption. These vehicle scenarios are not connected to existing or proposed policy, but illustrate the response of the model to hypothetical policy interventions. The gap between potential and simulated actual ethanol consumption reflects that high-blend fuel is not always used by high-blend-capable vehicles, for a variety of reasons.


Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

Vimmerstedt LJ, Bush B, Peterson S - PLoS ONE (2012)

Vehicle scenarios.The figure shows maximum potential ethanol consumption and simulated actual ethanol consumption results for all years under different vehicle scenarios. The Cash for Clunkers ramp scenario (CFC Ramp) increases the rates of retirement of old vehicles and purchase of new vehicles. The flex-fuel vehicles doubling scenario (FFVs 2×) shows ethanol consumption if the share of purchases of FFVs in each time period is assumed to double compared to the base case rate for that period, insofar as possible. FFV penetration alone does not achieve higher ethanol use, but it does lift the maximum potential ethanol consumption and enable higher levels of use when other conditions are favorable.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351488&req=5

pone-0035082-g008: Vehicle scenarios.The figure shows maximum potential ethanol consumption and simulated actual ethanol consumption results for all years under different vehicle scenarios. The Cash for Clunkers ramp scenario (CFC Ramp) increases the rates of retirement of old vehicles and purchase of new vehicles. The flex-fuel vehicles doubling scenario (FFVs 2×) shows ethanol consumption if the share of purchases of FFVs in each time period is assumed to double compared to the base case rate for that period, insofar as possible. FFV penetration alone does not achieve higher ethanol use, but it does lift the maximum potential ethanol consumption and enable higher levels of use when other conditions are favorable.
Mentions: We explored effects of changes in the base model inputs and assumptions through a series of sensitivity analyses. The sensitivity cases included modifications to assumptions about market actor behaviors, input data about various costs, and vehicle scenario inputs. In Figure 8, we show the effect of different vehicle scenarios on potential and simulated actual ethanol consumption. These vehicle scenarios are not connected to existing or proposed policy, but illustrate the response of the model to hypothetical policy interventions. The gap between potential and simulated actual ethanol consumption reflects that high-blend fuel is not always used by high-blend-capable vehicles, for a variety of reasons.

Bottom Line: The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain.A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously.Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

View Article: PubMed Central - PubMed

Affiliation: National Renewable Energy Laboratory, Strategic Energy Analysis Center, Golden, Colorado, United States of America. laura.vimmerstedt@nrel.gov

ABSTRACT
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Show MeSH