Limits...
Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

Vimmerstedt LJ, Bush B, Peterson S - PLoS ONE (2012)

Bottom Line: The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain.A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously.Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

View Article: PubMed Central - PubMed

Affiliation: National Renewable Energy Laboratory, Strategic Energy Analysis Center, Golden, Colorado, United States of America. laura.vimmerstedt@nrel.gov

ABSTRACT
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Show MeSH
Supply chain for ethanol fuel with Biomass Scenario Model structure.The full supply chain for ethanol fuel is shown, with the downstream end labeled. The modules of the Biomass Scenario Model are briefly described. The downstream version of the Biomass Scenario Model that was used in this paper includes a simplified version of the Conversion Module and the Distribution Logistics, Dispensing Station, and Vehicle Modules. For simplicity, in the downstream version, the Vehicle Module is used to generate vehicle scenarios, rather than being fully coupled during each run. E10, E20, and E85 are light-duty vehicle fuels that are approximately 10%, 20%, and 85% ethanol by volume, respectively.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351488&req=5

pone-0035082-g002: Supply chain for ethanol fuel with Biomass Scenario Model structure.The full supply chain for ethanol fuel is shown, with the downstream end labeled. The modules of the Biomass Scenario Model are briefly described. The downstream version of the Biomass Scenario Model that was used in this paper includes a simplified version of the Conversion Module and the Distribution Logistics, Dispensing Station, and Vehicle Modules. For simplicity, in the downstream version, the Vehicle Module is used to generate vehicle scenarios, rather than being fully coupled during each run. E10, E20, and E85 are light-duty vehicle fuels that are approximately 10%, 20%, and 85% ethanol by volume, respectively.

Mentions: This paper addresses the downstream section of the supply chain. The full supply chain is shown in Figure 2; the downstream end of the chain elaborates on the biofuels distribution and end-use components that are noted in the figure. Characteristics of the major components of the downstream system are summarized in Table 1. For each linked element in the downstream supply chain (i.e., entries in the first column), the infrastructure and market conditions necessary for an economically sustainable industry are listed, along with policies that can shape these infrastructure and market conditions. In the Methods section, we describe each of the supply chain links, infrastructure and market elements, and policy levers, as well as their representation in the model.


Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

Vimmerstedt LJ, Bush B, Peterson S - PLoS ONE (2012)

Supply chain for ethanol fuel with Biomass Scenario Model structure.The full supply chain for ethanol fuel is shown, with the downstream end labeled. The modules of the Biomass Scenario Model are briefly described. The downstream version of the Biomass Scenario Model that was used in this paper includes a simplified version of the Conversion Module and the Distribution Logistics, Dispensing Station, and Vehicle Modules. For simplicity, in the downstream version, the Vehicle Module is used to generate vehicle scenarios, rather than being fully coupled during each run. E10, E20, and E85 are light-duty vehicle fuels that are approximately 10%, 20%, and 85% ethanol by volume, respectively.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351488&req=5

pone-0035082-g002: Supply chain for ethanol fuel with Biomass Scenario Model structure.The full supply chain for ethanol fuel is shown, with the downstream end labeled. The modules of the Biomass Scenario Model are briefly described. The downstream version of the Biomass Scenario Model that was used in this paper includes a simplified version of the Conversion Module and the Distribution Logistics, Dispensing Station, and Vehicle Modules. For simplicity, in the downstream version, the Vehicle Module is used to generate vehicle scenarios, rather than being fully coupled during each run. E10, E20, and E85 are light-duty vehicle fuels that are approximately 10%, 20%, and 85% ethanol by volume, respectively.
Mentions: This paper addresses the downstream section of the supply chain. The full supply chain is shown in Figure 2; the downstream end of the chain elaborates on the biofuels distribution and end-use components that are noted in the figure. Characteristics of the major components of the downstream system are summarized in Table 1. For each linked element in the downstream supply chain (i.e., entries in the first column), the infrastructure and market conditions necessary for an economically sustainable industry are listed, along with policies that can shape these infrastructure and market conditions. In the Methods section, we describe each of the supply chain links, infrastructure and market elements, and policy levers, as well as their representation in the model.

Bottom Line: The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain.A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously.Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

View Article: PubMed Central - PubMed

Affiliation: National Renewable Energy Laboratory, Strategic Energy Analysis Center, Golden, Colorado, United States of America. laura.vimmerstedt@nrel.gov

ABSTRACT
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.

Show MeSH