Limits...
In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications.

Dwivedi V, Anandan EM, Mony RS, Muraleedharan TS, Valiathan MS, Mutsuddi M, Lakhotia SC - PLoS ONE (2012)

Bottom Line: On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity.RS feeding did not cause heavy metal toxicity.Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular bases of the effects of different Ayurvedic formulations.

View Article: PubMed Central - PubMed

Affiliation: Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India.

ABSTRACT

Background: Ayurveda represents the traditional medicine system of India. Since mechanistic details of therapy in terms of current biology are not available in Ayurvedic literature, modern scientific studies are necessary to understand its major concepts and procedures. It is necessary to examine effects of the whole Ayurvedic formulations rather than their "active" components as is done in most current studies.

Methods: We tested two different categories of formulations, a Rasayana (Amalaki Rasayana or AR, an herbal derivative) and a Bhasma (Rasa-Sindoor or RS, an organo-metallic derivative of mercury), for effects on longevity, development, fecundity, stress-tolerance, and heterogeneous nuclear ribonucleoprotein (hnRNP) levels of Drosophila melanogaster using at least 200 larvae or flies for each assay.

Results: A 0.5% (weight/volume) supplement of AR or RS affected life-history and other physiological traits in distinct ways. While the size of salivary glands, hnRNP levels in larval tissues, and thermotolerance of larvae/adult flies improved significantly following feeding either of the two formulations, the median life span and starvation resistance improved only with AR. Feeding on AR or RS supplemented food improved fecundity differently. Feeding of larvae and adults with AR increased the fecundity while the same with RS had opposite effect. On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity. RS feeding did not cause heavy metal toxicity.

Conclusions: The present study with two Ayurvedic formulations reveals formulation-specific effects on several parameters of the fly's life, which seem to generally agree with their recommended human usages in Ayurvedic practices. Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular bases of the effects of different Ayurvedic formulations.

Show MeSH

Related in: MedlinePlus

Feeding of Oregon R+ first instar larvae on food supplemented with 0.5% of AR or RS hastens pupation (A) and fly eclosion (B).The bars represent mean (± S.E.) of 8 replicates (N = 25 in each replicate; total N for each feeding regimen = 200). Numbers of pupae (A) or flies (B) in a given sample were monitored every two hours between 112–132 and 234–256 hr (X-axis), respectively, and expressed as % of larvae that had pupated or flies that had eclosed by the given time period. Control – regular food, AR – 0.5% AR supplemented food, AP- 0.143% Amalaki Powder supplemented food. RS – 0.5% RS supplemented food and H+G – Honey plus Ghee (same proportion as in 0.5% AR) supplemented food.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351451&req=5

pone-0037113-g002: Feeding of Oregon R+ first instar larvae on food supplemented with 0.5% of AR or RS hastens pupation (A) and fly eclosion (B).The bars represent mean (± S.E.) of 8 replicates (N = 25 in each replicate; total N for each feeding regimen = 200). Numbers of pupae (A) or flies (B) in a given sample were monitored every two hours between 112–132 and 234–256 hr (X-axis), respectively, and expressed as % of larvae that had pupated or flies that had eclosed by the given time period. Control – regular food, AR – 0.5% AR supplemented food, AP- 0.143% Amalaki Powder supplemented food. RS – 0.5% RS supplemented food and H+G – Honey plus Ghee (same proportion as in 0.5% AR) supplemented food.

Mentions: The 1st instar larvae that had hatched within one hour interval from the same batch of wild type eggs were distributed to plates with i) regular food (Control), ii) 0.5% AR supplemented food, iii) food supplemented with honey or Ghee or honey+Ghee or the triturated Amalaki powder only in the same proportion as in 0.5% AR supplemented food or iv) 0.5% RS supplemented food. The supplements in iii) served as additional controls for the AR-supplemented food (ii). The developmental assay revealed that larvae reared on 0.5% AR or 0.5% RS supplemented food developed a little faster since pupation in these dishes started a few hours earlier than in those having regular food or honey plus ghee supplemented food (Fig. 2A; Table 2). It is significant that the time of earliest and last pupating larvae is consistently shifted a few hours earlier than in those growing in parallel on the regular food (see Table 2). Adult flies also emerged earlier in AR or RS fed samples. The faster development was more apparent in the AR fed larvae (Fig. 2B). Supplementing the food with honey and Ghee (H+G in Fig. 2, Table 2) or only Ghee or only honey (not shown) did not affect the normal rate of development. However, supplementing food with the triturated Amalaki powder only (0.143%, AP in Fig. 2) also hastened the development but it was less than that seen with the whole AR supplement (Table 2).


In vivo effects of traditional Ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications.

Dwivedi V, Anandan EM, Mony RS, Muraleedharan TS, Valiathan MS, Mutsuddi M, Lakhotia SC - PLoS ONE (2012)

Feeding of Oregon R+ first instar larvae on food supplemented with 0.5% of AR or RS hastens pupation (A) and fly eclosion (B).The bars represent mean (± S.E.) of 8 replicates (N = 25 in each replicate; total N for each feeding regimen = 200). Numbers of pupae (A) or flies (B) in a given sample were monitored every two hours between 112–132 and 234–256 hr (X-axis), respectively, and expressed as % of larvae that had pupated or flies that had eclosed by the given time period. Control – regular food, AR – 0.5% AR supplemented food, AP- 0.143% Amalaki Powder supplemented food. RS – 0.5% RS supplemented food and H+G – Honey plus Ghee (same proportion as in 0.5% AR) supplemented food.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351451&req=5

pone-0037113-g002: Feeding of Oregon R+ first instar larvae on food supplemented with 0.5% of AR or RS hastens pupation (A) and fly eclosion (B).The bars represent mean (± S.E.) of 8 replicates (N = 25 in each replicate; total N for each feeding regimen = 200). Numbers of pupae (A) or flies (B) in a given sample were monitored every two hours between 112–132 and 234–256 hr (X-axis), respectively, and expressed as % of larvae that had pupated or flies that had eclosed by the given time period. Control – regular food, AR – 0.5% AR supplemented food, AP- 0.143% Amalaki Powder supplemented food. RS – 0.5% RS supplemented food and H+G – Honey plus Ghee (same proportion as in 0.5% AR) supplemented food.
Mentions: The 1st instar larvae that had hatched within one hour interval from the same batch of wild type eggs were distributed to plates with i) regular food (Control), ii) 0.5% AR supplemented food, iii) food supplemented with honey or Ghee or honey+Ghee or the triturated Amalaki powder only in the same proportion as in 0.5% AR supplemented food or iv) 0.5% RS supplemented food. The supplements in iii) served as additional controls for the AR-supplemented food (ii). The developmental assay revealed that larvae reared on 0.5% AR or 0.5% RS supplemented food developed a little faster since pupation in these dishes started a few hours earlier than in those having regular food or honey plus ghee supplemented food (Fig. 2A; Table 2). It is significant that the time of earliest and last pupating larvae is consistently shifted a few hours earlier than in those growing in parallel on the regular food (see Table 2). Adult flies also emerged earlier in AR or RS fed samples. The faster development was more apparent in the AR fed larvae (Fig. 2B). Supplementing the food with honey and Ghee (H+G in Fig. 2, Table 2) or only Ghee or only honey (not shown) did not affect the normal rate of development. However, supplementing food with the triturated Amalaki powder only (0.143%, AP in Fig. 2) also hastened the development but it was less than that seen with the whole AR supplement (Table 2).

Bottom Line: On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity.RS feeding did not cause heavy metal toxicity.Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular bases of the effects of different Ayurvedic formulations.

View Article: PubMed Central - PubMed

Affiliation: Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India.

ABSTRACT

Background: Ayurveda represents the traditional medicine system of India. Since mechanistic details of therapy in terms of current biology are not available in Ayurvedic literature, modern scientific studies are necessary to understand its major concepts and procedures. It is necessary to examine effects of the whole Ayurvedic formulations rather than their "active" components as is done in most current studies.

Methods: We tested two different categories of formulations, a Rasayana (Amalaki Rasayana or AR, an herbal derivative) and a Bhasma (Rasa-Sindoor or RS, an organo-metallic derivative of mercury), for effects on longevity, development, fecundity, stress-tolerance, and heterogeneous nuclear ribonucleoprotein (hnRNP) levels of Drosophila melanogaster using at least 200 larvae or flies for each assay.

Results: A 0.5% (weight/volume) supplement of AR or RS affected life-history and other physiological traits in distinct ways. While the size of salivary glands, hnRNP levels in larval tissues, and thermotolerance of larvae/adult flies improved significantly following feeding either of the two formulations, the median life span and starvation resistance improved only with AR. Feeding on AR or RS supplemented food improved fecundity differently. Feeding of larvae and adults with AR increased the fecundity while the same with RS had opposite effect. On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity. RS feeding did not cause heavy metal toxicity.

Conclusions: The present study with two Ayurvedic formulations reveals formulation-specific effects on several parameters of the fly's life, which seem to generally agree with their recommended human usages in Ayurvedic practices. Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular bases of the effects of different Ayurvedic formulations.

Show MeSH
Related in: MedlinePlus