Limits...
Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

Molloy K, Moore DR, Sohoglu E, Amitay S - PLoS ONE (2012)

Bottom Line: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain.Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed.In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr).

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom.

ABSTRACT

Background: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session.

Methodology/principal findings: We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased.

Conclusions/significance: Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

Show MeSH
Training regimens for Experiment 2.Two groups trained on 800 trials of FD per day. The T800 m group completed four days of training and the T800 s group completed one. Tests consisted of assessment at the trained and an untrained frequency, and were conducted at the beginning of Days 1, 2 and 5, and then one week (Day 12) and four weeks afterwards (Day 33). A five trial demo preceded the experiment.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351401&req=5

pone-0036929-g009: Training regimens for Experiment 2.Two groups trained on 800 trials of FD per day. The T800 m group completed four days of training and the T800 s group completed one. Tests consisted of assessment at the trained and an untrained frequency, and were conducted at the beginning of Days 1, 2 and 5, and then one week (Day 12) and four weeks afterwards (Day 33). A five trial demo preceded the experiment.

Mentions: The second experiment addressed two questions. The first, raised in the Introduction, is whether extended, multi-day training confers any benefit over single-session training. The second, raised in Experiment 1, regards the possibility that 800 trials per day exceed a maximum effective daily training in the later stages of learning. We found in Experiment 1 that performance of the T800 group improved significantly between 800 and 1600 trials. This would suggest that multi session training should enhance learning compared to single session training. On the other hand, we found that between-session improvements become more negative as training progresses, suggesting prolonged training may be less effective. In Experiment 2 one group trained on 800 trials of FD for a single day (T800 s) and a second group on 800 trials per day over 4 days (T800 m; Fig. 9). All participants were tested at the trained and an untrained frequency before training, and several times during and after training, to determine how well the regimens compared in terms of overall learning, retention of learning, and transfer to another condition.


Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

Molloy K, Moore DR, Sohoglu E, Amitay S - PLoS ONE (2012)

Training regimens for Experiment 2.Two groups trained on 800 trials of FD per day. The T800 m group completed four days of training and the T800 s group completed one. Tests consisted of assessment at the trained and an untrained frequency, and were conducted at the beginning of Days 1, 2 and 5, and then one week (Day 12) and four weeks afterwards (Day 33). A five trial demo preceded the experiment.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351401&req=5

pone-0036929-g009: Training regimens for Experiment 2.Two groups trained on 800 trials of FD per day. The T800 m group completed four days of training and the T800 s group completed one. Tests consisted of assessment at the trained and an untrained frequency, and were conducted at the beginning of Days 1, 2 and 5, and then one week (Day 12) and four weeks afterwards (Day 33). A five trial demo preceded the experiment.
Mentions: The second experiment addressed two questions. The first, raised in the Introduction, is whether extended, multi-day training confers any benefit over single-session training. The second, raised in Experiment 1, regards the possibility that 800 trials per day exceed a maximum effective daily training in the later stages of learning. We found in Experiment 1 that performance of the T800 group improved significantly between 800 and 1600 trials. This would suggest that multi session training should enhance learning compared to single session training. On the other hand, we found that between-session improvements become more negative as training progresses, suggesting prolonged training may be less effective. In Experiment 2 one group trained on 800 trials of FD for a single day (T800 s) and a second group on 800 trials per day over 4 days (T800 m; Fig. 9). All participants were tested at the trained and an untrained frequency before training, and several times during and after training, to determine how well the regimens compared in terms of overall learning, retention of learning, and transfer to another condition.

Bottom Line: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain.Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed.In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr).

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom.

ABSTRACT

Background: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session.

Methodology/principal findings: We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased.

Conclusions/significance: Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

Show MeSH