Limits...
Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

Molloy K, Moore DR, Sohoglu E, Amitay S - PLoS ONE (2012)

Bottom Line: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain.Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed.In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr).

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom.

ABSTRACT

Background: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session.

Methodology/principal findings: We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased.

Conclusions/significance: Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

Show MeSH
Training regimens for Experiment 1.Groups T800, T400 and T200 trained on 1600 trials of FD overall, with 800, 400 and 200 trials per day, respectively. Group T100 trained on 800 trials of FD overall, with 100 trials per day. A five-trial demo preceded the training, and 100 trials were run the day after training was completed (post-test), and 4–6 weeks after training was completed (retention test).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351401&req=5

pone-0036929-g002: Training regimens for Experiment 1.Groups T800, T400 and T200 trained on 1600 trials of FD overall, with 800, 400 and 200 trials per day, respectively. Group T100 trained on 800 trials of FD overall, with 100 trials per day. A five-trial demo preceded the training, and 100 trials were run the day after training was completed (post-test), and 4–6 weeks after training was completed (retention test).

Mentions: In this experiment we asked how much training per session is most effective. We varied the number of trials each day whilst keeping the overall amount of training constant (with the exception of the regimen with the shortest sessions). Overall learning and long-term retention were compared between four, multi-day training regimens (Fig. 2). We further assessed whether minimum or maximum effective amounts of daily training were achieved by comparing the speed of learning between regimens. Based on Wright and Sabin [2], who found a critical minimum of between 360 and 900 trials for between-session improvements, we tested a similar range. We expected the group(s) with fewer trials not to achieve a critical minimum and show reduced or no learning. Conversely, we expected overtraining to result in a reduced learning rate in the longer regimens relative to regimens with fewer trials.


Less is more: latent learning is maximized by shorter training sessions in auditory perceptual learning.

Molloy K, Moore DR, Sohoglu E, Amitay S - PLoS ONE (2012)

Training regimens for Experiment 1.Groups T800, T400 and T200 trained on 1600 trials of FD overall, with 800, 400 and 200 trials per day, respectively. Group T100 trained on 800 trials of FD overall, with 100 trials per day. A five-trial demo preceded the training, and 100 trials were run the day after training was completed (post-test), and 4–6 weeks after training was completed (retention test).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351401&req=5

pone-0036929-g002: Training regimens for Experiment 1.Groups T800, T400 and T200 trained on 1600 trials of FD overall, with 800, 400 and 200 trials per day, respectively. Group T100 trained on 800 trials of FD overall, with 100 trials per day. A five-trial demo preceded the training, and 100 trials were run the day after training was completed (post-test), and 4–6 weeks after training was completed (retention test).
Mentions: In this experiment we asked how much training per session is most effective. We varied the number of trials each day whilst keeping the overall amount of training constant (with the exception of the regimen with the shortest sessions). Overall learning and long-term retention were compared between four, multi-day training regimens (Fig. 2). We further assessed whether minimum or maximum effective amounts of daily training were achieved by comparing the speed of learning between regimens. Based on Wright and Sabin [2], who found a critical minimum of between 360 and 900 trials for between-session improvements, we tested a similar range. We expected the group(s) with fewer trials not to achieve a critical minimum and show reduced or no learning. Conversely, we expected overtraining to result in a reduced learning rate in the longer regimens relative to regimens with fewer trials.

Bottom Line: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain.Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed.In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr).

View Article: PubMed Central - PubMed

Affiliation: Medical Research Council Institute of Hearing Research, Nottingham, United Kingdom.

ABSTRACT

Background: The time course and outcome of perceptual learning can be affected by the length and distribution of practice, but the training regimen parameters that govern these effects have received little systematic study in the auditory domain. We asked whether there was a minimum requirement on the number of trials within a training session for learning to occur, whether there was a maximum limit beyond which additional trials became ineffective, and whether multiple training sessions provided benefit over a single session.

Methodology/principal findings: We investigated the efficacy of different regimens that varied in the distribution of practice across training sessions and in the overall amount of practice received on a frequency discrimination task. While learning was relatively robust to variations in regimen, the group with the shortest training sessions (∼8 min) had significantly faster learning in early stages of training than groups with longer sessions. In later stages, the group with the longest training sessions (>1 hr) showed slower learning than the other groups, suggesting overtraining. Between-session improvements were inversely correlated with performance; they were largest at the start of training and reduced as training progressed. In a second experiment we found no additional longer-term improvement in performance, retention, or transfer of learning for a group that trained over 4 sessions (∼4 hr in total) relative to a group that trained for a single session (∼1 hr). However, the mechanisms of learning differed; the single-session group continued to improve in the days following cessation of training, whereas the multi-session group showed no further improvement once training had ceased.

Conclusions/significance: Shorter training sessions were advantageous because they allowed for more latent, between-session and post-training learning to emerge. These findings suggest that efficient regimens should use short training sessions, and optimized spacing between sessions.

Show MeSH