Limits...
Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study.

Llufriu S, Blanco Y, Martinez-Heras E, Casanova-Molla J, Gabilondo I, Sepulveda M, Falcon C, Berenguer J, Bargallo N, Villoslada P, Graus F, Valls-Sole J, Saiz A - PLoS ONE (2012)

Bottom Line: MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from -0.446 to -0.546, P values from 0.048 to 0.011).The iSP latency correlated with CC area (r = -0.345, P = 0.049), volume (r = -0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016).We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS.

View Article: PubMed Central - PubMed

Affiliation: Center for Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

ABSTRACT

Background: Corpus callosum (CC) is a common target for multiple sclerosis (MS) pathology. We investigated the influence of CC damage on physical disability and cognitive dysfunction using a multimodal approach.

Methods: Twenty-one relapsing-remitting MS patients and 13 healthy controls underwent structural MRI and diffusion tensor of the CC (fractional anisotropy; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity). Interhemisferic transfer of motor inhibition was assessed by recording the ipsilateral silent period (iSP) to transcranial magnetic stimulation. We evaluated cognitive function using the Brief Repeatable Battery and physical disability using the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC) z-score.

Results: The iSP latency correlated with physical disability scores (r ranged from 0.596 to 0.657, P values from 0.004 to 0.001), and with results of visual memory (r = -0.645, P = 0.002), processing speed (r = -0.51, P = 0.018) and executive cognitive domain tests (r = -0.452, P = 0.039). The area of the rostrum correlated with the EDSS (r = -0.442, P = 0.045). MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from -0.446 to -0.546, P values from 0.048 to 0.011). The iSP latency correlated with CC area (r = -0.345, P = 0.049), volume (r = -0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016).

Conclusions: We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS. CC damage may contribute to cognitive dysfunction and in less extent to physical disability likely through a disconnection mechanism.

Show MeSH

Related in: MedlinePlus

Structural magnetic resonance imaging of the corpus callosum.Area of corpus callosum in midsagittal slice with subdivision in 7 segments, corresponding consecutively to the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and the splenium (top images) and volume obtained from 11 consecutive central sagittal slices (bottom images). Left images correspond to a healthy control and right images to a multiple sclerosis patient.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351399&req=5

pone-0037167-g001: Structural magnetic resonance imaging of the corpus callosum.Area of corpus callosum in midsagittal slice with subdivision in 7 segments, corresponding consecutively to the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and the splenium (top images) and volume obtained from 11 consecutive central sagittal slices (bottom images). Left images correspond to a healthy control and right images to a multiple sclerosis patient.

Mentions: CC area was calculated from the 3D structural T1-weighted midsagittal slice by means of semiautomatic segmentation tool of Analyze software 9.0 (http://www.analyzedirect.com; Biomedical Imaging Resource, Mayo Clinic). The midsagittal CC section was then divided in 7 segments with a semiautomated subregional division [30] (Figure 1). A CC mask was drawn in 11 consecutive slices around the midsagittal plane where it could be clearly differentiated from the cingulated gyrus. Moreover, all the CC lesions were manually traced on the MPRAGE sequence to get a lesion load from the CC. The volumetric and DTI analysis of the CC included the visible lesions. The volume of the CC mask was calculated by adding the area of the 11 consecutive slices (area per slice thickness) (Figure 1). The CC area and the volume were then multiplied by a brain scaling factor calculated by SIENAX (FMRIB, Oxford, UK) to normalize for the cranial size.


Influence of corpus callosum damage on cognition and physical disability in multiple sclerosis: a multimodal study.

Llufriu S, Blanco Y, Martinez-Heras E, Casanova-Molla J, Gabilondo I, Sepulveda M, Falcon C, Berenguer J, Bargallo N, Villoslada P, Graus F, Valls-Sole J, Saiz A - PLoS ONE (2012)

Structural magnetic resonance imaging of the corpus callosum.Area of corpus callosum in midsagittal slice with subdivision in 7 segments, corresponding consecutively to the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and the splenium (top images) and volume obtained from 11 consecutive central sagittal slices (bottom images). Left images correspond to a healthy control and right images to a multiple sclerosis patient.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351399&req=5

pone-0037167-g001: Structural magnetic resonance imaging of the corpus callosum.Area of corpus callosum in midsagittal slice with subdivision in 7 segments, corresponding consecutively to the rostrum, genu, rostral body, anterior midbody, posterior midbody, isthmus, and the splenium (top images) and volume obtained from 11 consecutive central sagittal slices (bottom images). Left images correspond to a healthy control and right images to a multiple sclerosis patient.
Mentions: CC area was calculated from the 3D structural T1-weighted midsagittal slice by means of semiautomatic segmentation tool of Analyze software 9.0 (http://www.analyzedirect.com; Biomedical Imaging Resource, Mayo Clinic). The midsagittal CC section was then divided in 7 segments with a semiautomated subregional division [30] (Figure 1). A CC mask was drawn in 11 consecutive slices around the midsagittal plane where it could be clearly differentiated from the cingulated gyrus. Moreover, all the CC lesions were manually traced on the MPRAGE sequence to get a lesion load from the CC. The volumetric and DTI analysis of the CC included the visible lesions. The volume of the CC mask was calculated by adding the area of the 11 consecutive slices (area per slice thickness) (Figure 1). The CC area and the volume were then multiplied by a brain scaling factor calculated by SIENAX (FMRIB, Oxford, UK) to normalize for the cranial size.

Bottom Line: MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from -0.446 to -0.546, P values from 0.048 to 0.011).The iSP latency correlated with CC area (r = -0.345, P = 0.049), volume (r = -0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016).We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS.

View Article: PubMed Central - PubMed

Affiliation: Center for Neuroimmunology, Service of Neurology, Hospital Clinic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.

ABSTRACT

Background: Corpus callosum (CC) is a common target for multiple sclerosis (MS) pathology. We investigated the influence of CC damage on physical disability and cognitive dysfunction using a multimodal approach.

Methods: Twenty-one relapsing-remitting MS patients and 13 healthy controls underwent structural MRI and diffusion tensor of the CC (fractional anisotropy; mean diffusivity, MD; radial diffusivity, RD; axial diffusivity). Interhemisferic transfer of motor inhibition was assessed by recording the ipsilateral silent period (iSP) to transcranial magnetic stimulation. We evaluated cognitive function using the Brief Repeatable Battery and physical disability using the Expanded Disability Status Scale (EDSS) and the MS Functional Composite (MSFC) z-score.

Results: The iSP latency correlated with physical disability scores (r ranged from 0.596 to 0.657, P values from 0.004 to 0.001), and with results of visual memory (r = -0.645, P = 0.002), processing speed (r = -0.51, P = 0.018) and executive cognitive domain tests (r = -0.452, P = 0.039). The area of the rostrum correlated with the EDSS (r = -0.442, P = 0.045). MD and RD correlated with cognitive performance, mainly with results of visual and verbal memory tests (r ranged from -0.446 to -0.546, P values from 0.048 to 0.011). The iSP latency correlated with CC area (r = -0.345, P = 0.049), volume (r = -0.401, P = 0.002), MD (r = 0.404, P = 0.002) and RD (r = 0.415, P = 0.016).

Conclusions: We found evidence for structural and microstructural CC abnormalities associated with impairment of motor callosal inhibitory conduction in MS. CC damage may contribute to cognitive dysfunction and in less extent to physical disability likely through a disconnection mechanism.

Show MeSH
Related in: MedlinePlus