Limits...
Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

Kataria H, Wadhwa R, Kaul SC, Kaur G - PLoS ONE (2012)

Bottom Line: We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70.ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent.Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.

ABSTRACT
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

Show MeSH

Related in: MedlinePlus

Representative Gelatin Zymograms for MMP 2 & 9 from media obtained from different groups of C6 (a) and IMR-32 (b) cells.The zymograms were analysed using spot –denso method in Alpha Ease software and data was represented as histograms. “*” represents the statistical significant difference between all the treatment groups (ASH-WEX alone, glutamate alone or glutamate + ASH-WEX groups) with respect to control group. “#” represents the statistical difference between “glutamate + ASH-WEX” treated groups with their respective “glutamate” treatment groups. “*” and “#” = p<0.05.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3351387&req=5

pone-0037080-g006: Representative Gelatin Zymograms for MMP 2 & 9 from media obtained from different groups of C6 (a) and IMR-32 (b) cells.The zymograms were analysed using spot –denso method in Alpha Ease software and data was represented as histograms. “*” represents the statistical significant difference between all the treatment groups (ASH-WEX alone, glutamate alone or glutamate + ASH-WEX groups) with respect to control group. “#” represents the statistical difference between “glutamate + ASH-WEX” treated groups with their respective “glutamate” treatment groups. “*” and “#” = p<0.05.

Mentions: Matrix metalloproteinase (MMPs) are a family of proteinases that function to cleave virtually all components of the extracellular matrix (ECM), making them excellent mediators of early inflammatory processes, tissue remodeling and scar formation following a variety of injury types. In particular, the gelatinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B) degrade common ECM components, as well as the major CNS matrix component, chondroitin sulfate proteoglycans (CSPGs). MMP-2 and MMP-9 have been linked to blood–brain barrier disruption, inflammation, angiogenesis, remodeling of the ECM and glial scar formation and are associated with extracellular remodeling that occurs in injury and repair processes in the CNS. The expression and activity of MMP-2 and 9 was studied by gelatin zymography. The expression/activity of both these enzymes was increased in glutamate treatment groups as apparent by the area of the white bands. ASH-WEX reduced the enzyme activity significantly upon treatment in low dose glutamate exposed cultures but was unable to induce any significant changes in high dose glutamate group in both the cell lines (Fig. 6 a,b).


Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against glutamate-induced excitotoxicity.

Kataria H, Wadhwa R, Kaul SC, Kaur G - PLoS ONE (2012)

Representative Gelatin Zymograms for MMP 2 & 9 from media obtained from different groups of C6 (a) and IMR-32 (b) cells.The zymograms were analysed using spot –denso method in Alpha Ease software and data was represented as histograms. “*” represents the statistical significant difference between all the treatment groups (ASH-WEX alone, glutamate alone or glutamate + ASH-WEX groups) with respect to control group. “#” represents the statistical difference between “glutamate + ASH-WEX” treated groups with their respective “glutamate” treatment groups. “*” and “#” = p<0.05.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3351387&req=5

pone-0037080-g006: Representative Gelatin Zymograms for MMP 2 & 9 from media obtained from different groups of C6 (a) and IMR-32 (b) cells.The zymograms were analysed using spot –denso method in Alpha Ease software and data was represented as histograms. “*” represents the statistical significant difference between all the treatment groups (ASH-WEX alone, glutamate alone or glutamate + ASH-WEX groups) with respect to control group. “#” represents the statistical difference between “glutamate + ASH-WEX” treated groups with their respective “glutamate” treatment groups. “*” and “#” = p<0.05.
Mentions: Matrix metalloproteinase (MMPs) are a family of proteinases that function to cleave virtually all components of the extracellular matrix (ECM), making them excellent mediators of early inflammatory processes, tissue remodeling and scar formation following a variety of injury types. In particular, the gelatinases, MMP-2 (gelatinase A) and MMP-9 (gelatinase B) degrade common ECM components, as well as the major CNS matrix component, chondroitin sulfate proteoglycans (CSPGs). MMP-2 and MMP-9 have been linked to blood–brain barrier disruption, inflammation, angiogenesis, remodeling of the ECM and glial scar formation and are associated with extracellular remodeling that occurs in injury and repair processes in the CNS. The expression and activity of MMP-2 and 9 was studied by gelatin zymography. The expression/activity of both these enzymes was increased in glutamate treatment groups as apparent by the area of the white bands. ASH-WEX reduced the enzyme activity significantly upon treatment in low dose glutamate exposed cultures but was unable to induce any significant changes in high dose glutamate group in both the cell lines (Fig. 6 a,b).

Bottom Line: We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70.ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent.Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

View Article: PubMed Central - PubMed

Affiliation: Department of Biotechnology, Guru Nanak Dev University, Amritsar, India.

ABSTRACT
Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative disorders. Search for herbal remedies that may possibly act as therapeutic agents is an active area of research to combat these diseases. The present study was designed to investigate the neuroprotective role of Withania somnifera (Ashwagandha), also known as Indian ginseng, against glutamate induced toxicity in the retinoic acid differentiated rat glioma (C6) and human neuroblastoma (IMR-32) cells. The neuroprotective activity of the Ashwagandha leaves derived water extract (ASH-WEX) was evaluated. Cell viability and the expression of glial and neuronal cell differentiation markers was examined in glutamate challenged differentiated cells with and without the presence of ASH-WEX. We demonstrate that RA-differentiated C6 and IMR-32 cells, when exposed to glutamate, undergo loss of neural network and cell death that was accompanied by increase in the stress protein HSP70. ASH-WEX pre-treatment inhibited glutamate-induced cell death and was able to revert glutamate-induced changes in HSP70 to a large extent. Furthermore, the analysis on the neuronal plasticity marker NCAM (Neural cell adhesion molecule) and its polysialylated form, PSA-NCAM revealed that ASH-WEX has therapeutic potential for prevention of neurodegeneration associated with glutamate-induced excitotoxicty.

Show MeSH
Related in: MedlinePlus