Limits...
Nonhuman primate induced pluripotent stem cells in regenerative medicine.

Wu Y, Mishra A, Qiu Z, Farnsworth S, Tardif SD, Hornsby PJ - Stem Cells Int (2012)

Bottom Line: Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models.Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies.We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA.

ABSTRACT
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.

No MeSH data available.


Related in: MedlinePlus

Derivation of neural progenitor cells (NPCs) from marmoset iPS cells and differentiation of NPCs to mature neurons. The series (a)–(c) shows the transition from undifferentiated iPS cells (a), to a line of NPCs (b), to mature neurons (c) (100x phase-contrast images). NPCs placed on a polylysine/laminin-coated glass surface stop dividing and form extensive axons and dendrites. Details of this further maturation are shown in series (d)–(f) (400x differential interference contrast images). Note particularly the varicosities of different sizes indicated by arrows in (f). These are sites of accumulation of cellular organelles and are precursors to the formation of synapses [37]. Their presence indicates the degree of maturity of these neurons.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3345260&req=5

fig4: Derivation of neural progenitor cells (NPCs) from marmoset iPS cells and differentiation of NPCs to mature neurons. The series (a)–(c) shows the transition from undifferentiated iPS cells (a), to a line of NPCs (b), to mature neurons (c) (100x phase-contrast images). NPCs placed on a polylysine/laminin-coated glass surface stop dividing and form extensive axons and dendrites. Details of this further maturation are shown in series (d)–(f) (400x differential interference contrast images). Note particularly the varicosities of different sizes indicated by arrows in (f). These are sites of accumulation of cellular organelles and are precursors to the formation of synapses [37]. Their presence indicates the degree of maturity of these neurons.

Mentions: In subsequent work, we investigated the potential of marmoset iPS cell lines to differentiate in vitro to cells of the neural lineage. Differentiation of iPS cells to neural progenitor cells (NPCs) has been extensively employed as a test of proper pluripotency; for example, this form of directed differentiation was used in a recent set of tests on a panel of well characterized human iPS cells [10, 11]. Protocols for NPC generation are of three general types: stromal cell-derived inducing activity (SDIA), a relatively poorly characterized mix of factors secreted by certain mesenchymal cells, such as the PA6 cell line [2, 41, 42]; embryoid body (EB) formation, followed by plating of the EBs on suitable surfaces in the presence of Neurobasal medium [43, 44]; and induction using small molecules, such as chemical inhibition of BMP/activin/nodal signaling via SMADs [45]. We have used each of these methods in marmoset iPS cells, and all of them produce NPC lines (Figure 4).


Nonhuman primate induced pluripotent stem cells in regenerative medicine.

Wu Y, Mishra A, Qiu Z, Farnsworth S, Tardif SD, Hornsby PJ - Stem Cells Int (2012)

Derivation of neural progenitor cells (NPCs) from marmoset iPS cells and differentiation of NPCs to mature neurons. The series (a)–(c) shows the transition from undifferentiated iPS cells (a), to a line of NPCs (b), to mature neurons (c) (100x phase-contrast images). NPCs placed on a polylysine/laminin-coated glass surface stop dividing and form extensive axons and dendrites. Details of this further maturation are shown in series (d)–(f) (400x differential interference contrast images). Note particularly the varicosities of different sizes indicated by arrows in (f). These are sites of accumulation of cellular organelles and are precursors to the formation of synapses [37]. Their presence indicates the degree of maturity of these neurons.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3345260&req=5

fig4: Derivation of neural progenitor cells (NPCs) from marmoset iPS cells and differentiation of NPCs to mature neurons. The series (a)–(c) shows the transition from undifferentiated iPS cells (a), to a line of NPCs (b), to mature neurons (c) (100x phase-contrast images). NPCs placed on a polylysine/laminin-coated glass surface stop dividing and form extensive axons and dendrites. Details of this further maturation are shown in series (d)–(f) (400x differential interference contrast images). Note particularly the varicosities of different sizes indicated by arrows in (f). These are sites of accumulation of cellular organelles and are precursors to the formation of synapses [37]. Their presence indicates the degree of maturity of these neurons.
Mentions: In subsequent work, we investigated the potential of marmoset iPS cell lines to differentiate in vitro to cells of the neural lineage. Differentiation of iPS cells to neural progenitor cells (NPCs) has been extensively employed as a test of proper pluripotency; for example, this form of directed differentiation was used in a recent set of tests on a panel of well characterized human iPS cells [10, 11]. Protocols for NPC generation are of three general types: stromal cell-derived inducing activity (SDIA), a relatively poorly characterized mix of factors secreted by certain mesenchymal cells, such as the PA6 cell line [2, 41, 42]; embryoid body (EB) formation, followed by plating of the EBs on suitable surfaces in the presence of Neurobasal medium [43, 44]; and induction using small molecules, such as chemical inhibition of BMP/activin/nodal signaling via SMADs [45]. We have used each of these methods in marmoset iPS cells, and all of them produce NPC lines (Figure 4).

Bottom Line: Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models.Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies.We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA.

ABSTRACT
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.

No MeSH data available.


Related in: MedlinePlus