Limits...
Nonhuman primate induced pluripotent stem cells in regenerative medicine.

Wu Y, Mishra A, Qiu Z, Farnsworth S, Tardif SD, Hornsby PJ - Stem Cells Int (2012)

Bottom Line: Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models.Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies.We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA.

ABSTRACT
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.

No MeSH data available.


Related in: MedlinePlus

Retroviral reprogramming vector designed to deliver four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM) in a single virus using “self-cleaving” peptides, which support efficient polycistronic expression from a single promoter [8]. In this version, expression is driven by the 5′ LTR. Additionally, loxP sites are present just before and just after the OSKM coding region, enabling excision of the vector from the genome of the reprogrammed cells. This vector was constructed by replacing the internal promoter (P) and eukaryotic selection marker of retroviral vector pLXSN by the OSKM sequence from FUW-OSKM [8].
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3345260&req=5

fig2: Retroviral reprogramming vector designed to deliver four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM) in a single virus using “self-cleaving” peptides, which support efficient polycistronic expression from a single promoter [8]. In this version, expression is driven by the 5′ LTR. Additionally, loxP sites are present just before and just after the OSKM coding region, enabling excision of the vector from the genome of the reprogrammed cells. This vector was constructed by replacing the internal promoter (P) and eukaryotic selection marker of retroviral vector pLXSN by the OSKM sequence from FUW-OSKM [8].

Mentions: Subsequently, we investigated the potential of a polycistronic vector for reprogramming (Figure 2). This retroviral vector has the features that (a) because expression of the reprogramming factors is driven by the 5′ LTR, expression is silenced during reprogramming, if cells have been properly reprogrammed [38]; (b) all factors are in one vector, thus avoiding the need for very high efficiency infection; (c) as a retroviral vector, only dividing cells are infected (this does not detract from the value of this type of vector, as iPS cells must arise from cells capable of cell division); (d) loxP sites enable future excision of the coding region when required. Marmoset iPS cells derived using this polycistronic retroviral vector exhibited the same characteristics of iPS cell clones derived by coinfection of the four factors. Therefore, cells derived by a 1 : 1 : 1 : 1 expression of the four reprogramming factors have properties that are basically the same as those derived by coinfection, in which the ratio of expression of the four factors is not necessarily equal and almost certainly varies from clone to clone.


Nonhuman primate induced pluripotent stem cells in regenerative medicine.

Wu Y, Mishra A, Qiu Z, Farnsworth S, Tardif SD, Hornsby PJ - Stem Cells Int (2012)

Retroviral reprogramming vector designed to deliver four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM) in a single virus using “self-cleaving” peptides, which support efficient polycistronic expression from a single promoter [8]. In this version, expression is driven by the 5′ LTR. Additionally, loxP sites are present just before and just after the OSKM coding region, enabling excision of the vector from the genome of the reprogrammed cells. This vector was constructed by replacing the internal promoter (P) and eukaryotic selection marker of retroviral vector pLXSN by the OSKM sequence from FUW-OSKM [8].
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3345260&req=5

fig2: Retroviral reprogramming vector designed to deliver four reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM) in a single virus using “self-cleaving” peptides, which support efficient polycistronic expression from a single promoter [8]. In this version, expression is driven by the 5′ LTR. Additionally, loxP sites are present just before and just after the OSKM coding region, enabling excision of the vector from the genome of the reprogrammed cells. This vector was constructed by replacing the internal promoter (P) and eukaryotic selection marker of retroviral vector pLXSN by the OSKM sequence from FUW-OSKM [8].
Mentions: Subsequently, we investigated the potential of a polycistronic vector for reprogramming (Figure 2). This retroviral vector has the features that (a) because expression of the reprogramming factors is driven by the 5′ LTR, expression is silenced during reprogramming, if cells have been properly reprogrammed [38]; (b) all factors are in one vector, thus avoiding the need for very high efficiency infection; (c) as a retroviral vector, only dividing cells are infected (this does not detract from the value of this type of vector, as iPS cells must arise from cells capable of cell division); (d) loxP sites enable future excision of the coding region when required. Marmoset iPS cells derived using this polycistronic retroviral vector exhibited the same characteristics of iPS cell clones derived by coinfection of the four factors. Therefore, cells derived by a 1 : 1 : 1 : 1 expression of the four reprogramming factors have properties that are basically the same as those derived by coinfection, in which the ratio of expression of the four factors is not necessarily equal and almost certainly varies from clone to clone.

Bottom Line: Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models.Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies.We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled.

View Article: PubMed Central - PubMed

Affiliation: Department of Physiology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245, USA.

ABSTRACT
Among the various species from which induced pluripotent stem cells have been derived, nonhuman primates (NHPs) have a unique role as preclinical models. Their relatedness to humans and similar physiology, including central nervous system, make them ideal for translational studies. We review here the progress made in deriving and characterizing iPS cell lines from different NHP species. We focus on iPS cell lines from the marmoset, a small NHP in which several human disease states can be modeled. The marmoset can serve as a model for the implementation of patient-specific autologous cell therapy in regenerative medicine.

No MeSH data available.


Related in: MedlinePlus