Limits...
Ebolavirus Replication and Tetherin/BST-2.

Yasuda J - Front Microbiol (2012)

Bottom Line: Replication of ZEBOV is not inhibited by tetherin/BST-2 expression, although tetherin/BST-2 was expected to inhibit EBOV release as well as VLP release.Recently, it was reported that viral glycoprotein of EBOV, GP, antagonizes the antiviral effect of tetherin/BST-2.However, the mechanism by which GP antagonizes the antiviral activity of tetherin/BST-2 and whether GP of the other EBOV species function as antagonists of tetherin/BST-2 remain unclear.

View Article: PubMed Central - PubMed

Affiliation: Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University Nagasaki, Japan.

ABSTRACT
Ebolavirus (EBOV) is an enveloped, non-segmented, negative-stranded RNA virus, which consists of five species: Zaire ebolavirus, Sudan ebolavirus, Tai Forest ebolavirus, Bundibugyo ebolavirus, and Reston ebolavirus. EBOV causes a lethal hemorrhagic fever in both humans and non-human primates. The EBOV RNA genome encodes seven viral proteins: NP, VP35, VP40, GP, VP30, VP24, and L. VP40 is a matrix protein and is essential for virus assembly and release from host cells. Expression of VP40 in mammalian cells is sufficient to generate extracellular virus-like particles, which resemble authentic virions. Tetherin/BST-2, which was identified as an effective cellular factor that prevents human immunodeficiency virus-1 release in the absence of viral accessory protein Vpu, has been reported to inhibit ZEBOV VP40-induced VLP release. Tetherin/BST-2 appears to inhibit virus release by physically tethering viral particles to the cell surface via its N-terminal transmembrane domain and C-terminal glycosylphosphatidylinositol anchor. Replication of ZEBOV is not inhibited by tetherin/BST-2 expression, although tetherin/BST-2 was expected to inhibit EBOV release as well as VLP release. Recently, it was reported that viral glycoprotein of EBOV, GP, antagonizes the antiviral effect of tetherin/BST-2. However, the mechanism by which GP antagonizes the antiviral activity of tetherin/BST-2 and whether GP of the other EBOV species function as antagonists of tetherin/BST-2 remain unclear.

No MeSH data available.


Related in: MedlinePlus

Schematic representation of EBOV genome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3316994&req=5

Figure 1: Schematic representation of EBOV genome.

Mentions: The genome is approximately 19 kb in length and encodes the viral proteins in the order NP–VP35–VP40–GP/sGP–VP30–VP24–L (Figure 1). The extragenic sequence at the 3′ end, which is called the leader, of EBOV is short, ranging from 50 to 70 bases in length, while the length of the 5′ end sequence, which is called the trailer, varies between species, ranging from 25 to 677 bases (25 bases for REBOV and 677 bases for ZEBOV). The extreme 3′ and 5′ end sequences are conserved and potentially form stem-loop structures (Geisbert and Jahrling, 1995; Sanchez et al., 2007). These sequences contain the encapsidation signals as well as the replication origin and transcription promoter.


Ebolavirus Replication and Tetherin/BST-2.

Yasuda J - Front Microbiol (2012)

Schematic representation of EBOV genome.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3316994&req=5

Figure 1: Schematic representation of EBOV genome.
Mentions: The genome is approximately 19 kb in length and encodes the viral proteins in the order NP–VP35–VP40–GP/sGP–VP30–VP24–L (Figure 1). The extragenic sequence at the 3′ end, which is called the leader, of EBOV is short, ranging from 50 to 70 bases in length, while the length of the 5′ end sequence, which is called the trailer, varies between species, ranging from 25 to 677 bases (25 bases for REBOV and 677 bases for ZEBOV). The extreme 3′ and 5′ end sequences are conserved and potentially form stem-loop structures (Geisbert and Jahrling, 1995; Sanchez et al., 2007). These sequences contain the encapsidation signals as well as the replication origin and transcription promoter.

Bottom Line: Replication of ZEBOV is not inhibited by tetherin/BST-2 expression, although tetherin/BST-2 was expected to inhibit EBOV release as well as VLP release.Recently, it was reported that viral glycoprotein of EBOV, GP, antagonizes the antiviral effect of tetherin/BST-2.However, the mechanism by which GP antagonizes the antiviral activity of tetherin/BST-2 and whether GP of the other EBOV species function as antagonists of tetherin/BST-2 remain unclear.

View Article: PubMed Central - PubMed

Affiliation: Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University Nagasaki, Japan.

ABSTRACT
Ebolavirus (EBOV) is an enveloped, non-segmented, negative-stranded RNA virus, which consists of five species: Zaire ebolavirus, Sudan ebolavirus, Tai Forest ebolavirus, Bundibugyo ebolavirus, and Reston ebolavirus. EBOV causes a lethal hemorrhagic fever in both humans and non-human primates. The EBOV RNA genome encodes seven viral proteins: NP, VP35, VP40, GP, VP30, VP24, and L. VP40 is a matrix protein and is essential for virus assembly and release from host cells. Expression of VP40 in mammalian cells is sufficient to generate extracellular virus-like particles, which resemble authentic virions. Tetherin/BST-2, which was identified as an effective cellular factor that prevents human immunodeficiency virus-1 release in the absence of viral accessory protein Vpu, has been reported to inhibit ZEBOV VP40-induced VLP release. Tetherin/BST-2 appears to inhibit virus release by physically tethering viral particles to the cell surface via its N-terminal transmembrane domain and C-terminal glycosylphosphatidylinositol anchor. Replication of ZEBOV is not inhibited by tetherin/BST-2 expression, although tetherin/BST-2 was expected to inhibit EBOV release as well as VLP release. Recently, it was reported that viral glycoprotein of EBOV, GP, antagonizes the antiviral effect of tetherin/BST-2. However, the mechanism by which GP antagonizes the antiviral activity of tetherin/BST-2 and whether GP of the other EBOV species function as antagonists of tetherin/BST-2 remain unclear.

No MeSH data available.


Related in: MedlinePlus