Limits...
MicroRNA-141 represses HBV replication by targeting PPARA.

Hu W, Wang X, Ding X, Li Y, Zhang X, Xie P, Yang J, Wang S - PLoS ONE (2012)

Bottom Line: Our results suggest that miR-141 suppressed HBV replication by reducing HBV promoter activities by down-regulating PPARA.This study provides new insights into the molecular mechanisms associated with HBV-host interactions.Furthermore, this information may facilitate the development of novel anti-HBV therapeutic strategies.

View Article: PubMed Central - PubMed

Affiliation: Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.

ABSTRACT
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional level and play critical roles in a variety of physiological and pathological processes. In this report, miR-141 was identified to repress HBV expression by screening a small miRNA expressing library and synthetic miR-141 mimics could also significantly suppress HBV expression and replication in HepG2 cells. Bioinformatic analysis and experiment assays indicate that peroxisome proliferator-activated receptor alpha (PPARA) was the target of hsa-miR-141 during this process. Furthermore, knockdown of PPARA by small interfering RNA (siRNA) inhibited HBV replication similar to levels observed for miR-141. Promoter functional analysis indicated that repression of HBV replication by miR-141 mimics or siRNA was mediated by interfering with the HBV promoter functions, consistent with previous studies demonstrating that PPARA regulated HBV gene expression through interactions with HBV promoter regulatory elements. Our results suggest that miR-141 suppressed HBV replication by reducing HBV promoter activities by down-regulating PPARA. This study provides new insights into the molecular mechanisms associated with HBV-host interactions. Furthermore, this information may facilitate the development of novel anti-HBV therapeutic strategies.

Show MeSH

Related in: MedlinePlus

Silencing of PPARA by siRNA represses HBV replication in HepG2 cells.The levels of PPARA mRNA and protein in HepG2 cells 48 h post transfection with PPARA specific siRNA were analyzed, respectively, by (A) semi-quantitative RT-PCR or (B) Western blot. GAPDH and β-actin were used as internal controls, respectively. The ratio of the band intensities were determined as described above (Lane M, molecular weight standards). The levels of (C) HBsAg and (D) HBeAg were determined 24, 48 and 72 h post transfection. (E) HBV DNA concentrations were determined 72 h post transfection. Relative levels were normalized as a percentage of the negative control siRNA-C.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3316618&req=5

pone-0034165-g005: Silencing of PPARA by siRNA represses HBV replication in HepG2 cells.The levels of PPARA mRNA and protein in HepG2 cells 48 h post transfection with PPARA specific siRNA were analyzed, respectively, by (A) semi-quantitative RT-PCR or (B) Western blot. GAPDH and β-actin were used as internal controls, respectively. The ratio of the band intensities were determined as described above (Lane M, molecular weight standards). The levels of (C) HBsAg and (D) HBeAg were determined 24, 48 and 72 h post transfection. (E) HBV DNA concentrations were determined 72 h post transfection. Relative levels were normalized as a percentage of the negative control siRNA-C.

Mentions: Although the importance of PPARA-RXR heterodimers in HBV replication has been reported previously [13]–[15], we confirmed these observations using our cell transfection model by silencing PPARA. HepG2 cells were transfected with PPARA-specific siRNAs only or with the pHBV1.3 plasmid. PPARA expression levels were determined by semi-quantitative RT-PCR and Western blot analyses and the HBsAg/HBeAg levels in cell culture supernatants, as well as viral DNA loads within cells, were determined as described above. Results indicated that transfection of PPARA-specific siRNAs led to a significant decrease in PPARA levels (Fig. 5A, B) and that reductions in PPARA levels resulted in a significant inhibition of HBV replication in HepG2 cells (Fig. 5C–E).


MicroRNA-141 represses HBV replication by targeting PPARA.

Hu W, Wang X, Ding X, Li Y, Zhang X, Xie P, Yang J, Wang S - PLoS ONE (2012)

Silencing of PPARA by siRNA represses HBV replication in HepG2 cells.The levels of PPARA mRNA and protein in HepG2 cells 48 h post transfection with PPARA specific siRNA were analyzed, respectively, by (A) semi-quantitative RT-PCR or (B) Western blot. GAPDH and β-actin were used as internal controls, respectively. The ratio of the band intensities were determined as described above (Lane M, molecular weight standards). The levels of (C) HBsAg and (D) HBeAg were determined 24, 48 and 72 h post transfection. (E) HBV DNA concentrations were determined 72 h post transfection. Relative levels were normalized as a percentage of the negative control siRNA-C.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3316618&req=5

pone-0034165-g005: Silencing of PPARA by siRNA represses HBV replication in HepG2 cells.The levels of PPARA mRNA and protein in HepG2 cells 48 h post transfection with PPARA specific siRNA were analyzed, respectively, by (A) semi-quantitative RT-PCR or (B) Western blot. GAPDH and β-actin were used as internal controls, respectively. The ratio of the band intensities were determined as described above (Lane M, molecular weight standards). The levels of (C) HBsAg and (D) HBeAg were determined 24, 48 and 72 h post transfection. (E) HBV DNA concentrations were determined 72 h post transfection. Relative levels were normalized as a percentage of the negative control siRNA-C.
Mentions: Although the importance of PPARA-RXR heterodimers in HBV replication has been reported previously [13]–[15], we confirmed these observations using our cell transfection model by silencing PPARA. HepG2 cells were transfected with PPARA-specific siRNAs only or with the pHBV1.3 plasmid. PPARA expression levels were determined by semi-quantitative RT-PCR and Western blot analyses and the HBsAg/HBeAg levels in cell culture supernatants, as well as viral DNA loads within cells, were determined as described above. Results indicated that transfection of PPARA-specific siRNAs led to a significant decrease in PPARA levels (Fig. 5A, B) and that reductions in PPARA levels resulted in a significant inhibition of HBV replication in HepG2 cells (Fig. 5C–E).

Bottom Line: Our results suggest that miR-141 suppressed HBV replication by reducing HBV promoter activities by down-regulating PPARA.This study provides new insights into the molecular mechanisms associated with HBV-host interactions.Furthermore, this information may facilitate the development of novel anti-HBV therapeutic strategies.

View Article: PubMed Central - PubMed

Affiliation: Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.

ABSTRACT
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression primarily at the post-transcriptional level and play critical roles in a variety of physiological and pathological processes. In this report, miR-141 was identified to repress HBV expression by screening a small miRNA expressing library and synthetic miR-141 mimics could also significantly suppress HBV expression and replication in HepG2 cells. Bioinformatic analysis and experiment assays indicate that peroxisome proliferator-activated receptor alpha (PPARA) was the target of hsa-miR-141 during this process. Furthermore, knockdown of PPARA by small interfering RNA (siRNA) inhibited HBV replication similar to levels observed for miR-141. Promoter functional analysis indicated that repression of HBV replication by miR-141 mimics or siRNA was mediated by interfering with the HBV promoter functions, consistent with previous studies demonstrating that PPARA regulated HBV gene expression through interactions with HBV promoter regulatory elements. Our results suggest that miR-141 suppressed HBV replication by reducing HBV promoter activities by down-regulating PPARA. This study provides new insights into the molecular mechanisms associated with HBV-host interactions. Furthermore, this information may facilitate the development of novel anti-HBV therapeutic strategies.

Show MeSH
Related in: MedlinePlus