Limits...
Age-related dissociation of sensory and decision-based auditory motion processing.

Ludwig AA, Rübsamen R, Dörrscheidt GJ, Kotz SA - Front Hum Neurosci (2012)

Bottom Line: In contrast, pronounced MMNs for both deviant sizes were found in children.The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities.The study critically accounts for advanced understanding of children's central auditory development.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig Leipzig, Germany.

ABSTRACT
Studies on the maturation of auditory motion processing in children have yielded inconsistent reports. The present study combines subjective and objective measurements to investigate how the auditory perceptual abilities of children change during development and whether these changes are paralleled by changes in the event-related brain potential (ERP). We employed the mismatch negativity (MMN) to determine maturational changes in the discrimination of interaural time differences (ITDs) that generate lateralized moving auditory percepts. MMNs were elicited in children, teenagers, and adults, using a small and a large ITD at stimulus offset with respect to each subject's discrimination threshold. In adults and teenagers large deviants elicited prominent MMNs, whereas small deviants at the behavioral threshold elicited only a marginal or no MMN. In contrast, pronounced MMNs for both deviant sizes were found in children. Behaviorally, however, most of the children showed higher discrimination thresholds than teens and adults. Although automatic ITD detection is functional, active discrimination is still limited in children. The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities. The study critically accounts for advanced understanding of children's central auditory development.

No MeSH data available.


Interaction magnitude × hemisphere. Mean amplitudes and standard error of MMN elicited by large (light gray boxes) and small (dark gray boxes) deviants over left and right scalp positions. While the large deviant caused larger amplitudes over the left hemisphere, the small deviant elicited larger amplitudes over the right hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3313480&req=5

Figure 6: Interaction magnitude × hemisphere. Mean amplitudes and standard error of MMN elicited by large (light gray boxes) and small (dark gray boxes) deviants over left and right scalp positions. While the large deviant caused larger amplitudes over the left hemisphere, the small deviant elicited larger amplitudes over the right hemisphere.

Mentions: In addition, an interaction of magnitude and hemisphere was found (F(1, 58) = 9.38, p = 0.0033), resulting from the fact that the large deviant elicited larger left-hemispheric amplitudes and the small deviant elicited larger right-hemispheric amplitudes (Figure 6). The right-hemispheric larger MMNs for the small deviant condition are also evident in Figure 3, notably for teens (B) and children (A). Post-hoct-tests revealed significant amplitude differences between deviants over the left hemisphere (t(60) = −4.38, p < 0.0001).


Age-related dissociation of sensory and decision-based auditory motion processing.

Ludwig AA, Rübsamen R, Dörrscheidt GJ, Kotz SA - Front Hum Neurosci (2012)

Interaction magnitude × hemisphere. Mean amplitudes and standard error of MMN elicited by large (light gray boxes) and small (dark gray boxes) deviants over left and right scalp positions. While the large deviant caused larger amplitudes over the left hemisphere, the small deviant elicited larger amplitudes over the right hemisphere.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3313480&req=5

Figure 6: Interaction magnitude × hemisphere. Mean amplitudes and standard error of MMN elicited by large (light gray boxes) and small (dark gray boxes) deviants over left and right scalp positions. While the large deviant caused larger amplitudes over the left hemisphere, the small deviant elicited larger amplitudes over the right hemisphere.
Mentions: In addition, an interaction of magnitude and hemisphere was found (F(1, 58) = 9.38, p = 0.0033), resulting from the fact that the large deviant elicited larger left-hemispheric amplitudes and the small deviant elicited larger right-hemispheric amplitudes (Figure 6). The right-hemispheric larger MMNs for the small deviant condition are also evident in Figure 3, notably for teens (B) and children (A). Post-hoct-tests revealed significant amplitude differences between deviants over the left hemisphere (t(60) = −4.38, p < 0.0001).

Bottom Line: In contrast, pronounced MMNs for both deviant sizes were found in children.The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities.The study critically accounts for advanced understanding of children's central auditory development.

View Article: PubMed Central - PubMed

Affiliation: Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig Leipzig, Germany.

ABSTRACT
Studies on the maturation of auditory motion processing in children have yielded inconsistent reports. The present study combines subjective and objective measurements to investigate how the auditory perceptual abilities of children change during development and whether these changes are paralleled by changes in the event-related brain potential (ERP). We employed the mismatch negativity (MMN) to determine maturational changes in the discrimination of interaural time differences (ITDs) that generate lateralized moving auditory percepts. MMNs were elicited in children, teenagers, and adults, using a small and a large ITD at stimulus offset with respect to each subject's discrimination threshold. In adults and teenagers large deviants elicited prominent MMNs, whereas small deviants at the behavioral threshold elicited only a marginal or no MMN. In contrast, pronounced MMNs for both deviant sizes were found in children. Behaviorally, however, most of the children showed higher discrimination thresholds than teens and adults. Although automatic ITD detection is functional, active discrimination is still limited in children. The lack of MMN deviance dependency in children suggests that unlike in teenagers and adults, neural signatures of automatic auditory motion processing do not mirror discrimination abilities. The study critically accounts for advanced understanding of children's central auditory development.

No MeSH data available.