Limits...
NGF, brain and behavioral plasticity.

Berry A, Bindocci E, Alleva E - Neural Plast. (2012)

Bottom Line: Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations.However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive.Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity.

View Article: PubMed Central - PubMed

Affiliation: Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

ABSTRACT
Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations. However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive. Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity.

Show MeSH

Related in: MedlinePlus

NGF secretion may exert an inhibitory feedback effect on the aggressive behavior of male mice. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3306960&req=5

fig1: NGF secretion may exert an inhibitory feedback effect on the aggressive behavior of male mice. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile.

Mentions: Following fighting behavior, adrenal weight increases quite markedly and quickly in male mice suggesting that social/aggressive behavior might control circulating NGF release from salivary glands and that these might in turn control adrenal morphology as well as adrenal functional status [47, 48]. This hypothesis has been supported by data showing that exogenous NGF administration (i.p. delivery, for 10 consecutive days in order to mimic 10 subsequent daily fighting sessions) results in a marked adrenal gland hypertrophy [43, 47, 48]. Thus, NGF release may exert an inhibitory feedback effect on aggressive behavior. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile (Figure 1) [46, 47, 49].


NGF, brain and behavioral plasticity.

Berry A, Bindocci E, Alleva E - Neural Plast. (2012)

NGF secretion may exert an inhibitory feedback effect on the aggressive behavior of male mice. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3306960&req=5

fig1: NGF secretion may exert an inhibitory feedback effect on the aggressive behavior of male mice. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile.
Mentions: Following fighting behavior, adrenal weight increases quite markedly and quickly in male mice suggesting that social/aggressive behavior might control circulating NGF release from salivary glands and that these might in turn control adrenal morphology as well as adrenal functional status [47, 48]. This hypothesis has been supported by data showing that exogenous NGF administration (i.p. delivery, for 10 consecutive days in order to mimic 10 subsequent daily fighting sessions) results in a marked adrenal gland hypertrophy [43, 47, 48]. Thus, NGF release may exert an inhibitory feedback effect on aggressive behavior. The higher NGF release and the hypertrophy of the adrenals, occurring in subordinates male mice, suggest a “regulative loop” involving NGF-mediated increase of glucocorticoids secretion (upon adrenals) acting to enhance a submissive profile (Figure 1) [46, 47, 49].

Bottom Line: Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations.However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive.Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity.

View Article: PubMed Central - PubMed

Affiliation: Section of Behavioral Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.

ABSTRACT
Nerve Growth Factor (NGF) was initially studied for its role as a key player in the regulation of peripheral innervations. However, the successive finding of its release in the bloodstream of male mice following aggressive encounters and its presence in the central nervous system led to the hypothesis that variations in brain NGF levels, caused by psychosocial stressor, and the related alterations in emotionality, could be functional to the development of proper strategies to cope with the stressor itself and thus to survive. Years later this vision is still relevant, and the body of evidence on the role of NGF has been strengthened and expanded from trophic factor playing a role in brain growth and differentiation to a much more complex messenger, involved in psychoneuroendocrine plasticity.

Show MeSH
Related in: MedlinePlus