Limits...
Identification of XMRV infection-associated microRNAs in four cell types in culture.

Mohan KV, Devadas K, Sainath Rao S, Hewlett I, Atreya C - PLoS ONE (2012)

Bottom Line: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently.MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV.

View Article: PubMed Central - PubMed

Affiliation: Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America.

ABSTRACT

Introduction: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.

Methods: Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray.

Results: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types.

Discussion: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.

Show MeSH

Related in: MedlinePlus

Heat map and unsupervised Hierarchical Clustering.The clustering is performed on all samples and on all microRNAs with standard deviation over 1. Each row represents one microRNA and each column represents one sample. The microRNA clustering tree is shown on the left. The color scale shown at the bottom illustrates the relative expression level of a microRNA across all samples: red color represents an expression level above mean, green color represents expression level lower than the mean.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3306368&req=5

pone-0032853-g003: Heat map and unsupervised Hierarchical Clustering.The clustering is performed on all samples and on all microRNAs with standard deviation over 1. Each row represents one microRNA and each column represents one sample. The microRNA clustering tree is shown on the left. The color scale shown at the bottom illustrates the relative expression level of a microRNA across all samples: red color represents an expression level above mean, green color represents expression level lower than the mean.

Mentions: MicroRNA expression profiles from four different XMRV-infected cell types at 3 different time points were plotted on a heat map. As observed in Fig. 3, the heat map diagram depicts results of the two-way hierarchical clustering of microRNAs and samples. Each row representing one miRNA and each column representing one sample confirms the variation in miRNA expression profile between the continuous prostate cancer cell lines (LNCaP and DU145) and the PBLs and MDMs. A more distinct pattern of demarcation in miRNA profiles between these two set of cell types is observed in the region of the heat map depicting miR-1275 to miR-765 (Fig. 3). The microRNA clustering tree is shown on left of the figure.


Identification of XMRV infection-associated microRNAs in four cell types in culture.

Mohan KV, Devadas K, Sainath Rao S, Hewlett I, Atreya C - PLoS ONE (2012)

Heat map and unsupervised Hierarchical Clustering.The clustering is performed on all samples and on all microRNAs with standard deviation over 1. Each row represents one microRNA and each column represents one sample. The microRNA clustering tree is shown on the left. The color scale shown at the bottom illustrates the relative expression level of a microRNA across all samples: red color represents an expression level above mean, green color represents expression level lower than the mean.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3306368&req=5

pone-0032853-g003: Heat map and unsupervised Hierarchical Clustering.The clustering is performed on all samples and on all microRNAs with standard deviation over 1. Each row represents one microRNA and each column represents one sample. The microRNA clustering tree is shown on the left. The color scale shown at the bottom illustrates the relative expression level of a microRNA across all samples: red color represents an expression level above mean, green color represents expression level lower than the mean.
Mentions: MicroRNA expression profiles from four different XMRV-infected cell types at 3 different time points were plotted on a heat map. As observed in Fig. 3, the heat map diagram depicts results of the two-way hierarchical clustering of microRNAs and samples. Each row representing one miRNA and each column representing one sample confirms the variation in miRNA expression profile between the continuous prostate cancer cell lines (LNCaP and DU145) and the PBLs and MDMs. A more distinct pattern of demarcation in miRNA profiles between these two set of cell types is observed in the region of the heat map depicting miR-1275 to miR-765 (Fig. 3). The microRNA clustering tree is shown on left of the figure.

Bottom Line: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently.MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV.

View Article: PubMed Central - PubMed

Affiliation: Section of Cell Biology, Laboratory of Cellular Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America.

ABSTRACT

Introduction: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture.

Methods: Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray.

Results: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types.

Discussion: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types.

Show MeSH
Related in: MedlinePlus