Limits...
Immediate, but not delayed, microsurgical skull reconstruction exacerbates brain damage in experimental traumatic brain injury model.

Glover LE, Tajiri N, Lau T, Kaneko Y, van Loveren H, Borlongan CV - PLoS ONE (2012)

Bottom Line: Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull.In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts.Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America.

ABSTRACT
Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI.

Show MeSH

Related in: MedlinePlus

TTC Immediate skull reconstruction with bone wax alone or in combination with bone flap exacerbates cortical damage in TBI.TTC analysis of moderate (Figure 3A, quantified in C) and severe (Figure 3B, quantified in D) TBI revealed that immediate reconstruction with bone wax only or bone wax and bone flap significantly increased cortical damage compared to no reconstruction or reconstruction with only the bone flap. Of interest, delayed reconstruction at 2 days after TBI significantly reduced cortical damage compared to immediate reconstruction with bone wax only or bone wax and bone flap. Bars represent mean ± SEM. Asterisks (*) indicate p<0.05 vs. no reconstruction, immediate reconstruction with bone flap, and delayed reconstruction; # indicates p<0.05 vs. no reconstruction, bone flap, bone wax, and bone wax and flap; § indicates p<0.05 vs. bone wax.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3306278&req=5

pone-0033646-g003: TTC Immediate skull reconstruction with bone wax alone or in combination with bone flap exacerbates cortical damage in TBI.TTC analysis of moderate (Figure 3A, quantified in C) and severe (Figure 3B, quantified in D) TBI revealed that immediate reconstruction with bone wax only or bone wax and bone flap significantly increased cortical damage compared to no reconstruction or reconstruction with only the bone flap. Of interest, delayed reconstruction at 2 days after TBI significantly reduced cortical damage compared to immediate reconstruction with bone wax only or bone wax and bone flap. Bars represent mean ± SEM. Asterisks (*) indicate p<0.05 vs. no reconstruction, immediate reconstruction with bone flap, and delayed reconstruction; # indicates p<0.05 vs. no reconstruction, bone flap, bone wax, and bone wax and flap; § indicates p<0.05 vs. bone wax.

Mentions: As previously reported [3], [4], the CCI produced cortical damage in adult rats, with the severe model resulting in larger cortical alterations than the moderate model. TTC staining revealed that immediate skull reconstruction, in general, worsened the cortical damage (F4,15 = 100.622, p<0.0001 and F4,15 = 125.885, p<0.0001 for moderate and severe TBI, respectively) (Figure 3). Although it provided normalized skull structure, TTC staining revealed that immediate reconstruction with bone wax only and combined bone wax and bone flap significantly exacerbated cortical damage compared to the groups that received no skull reconstruction and bone flap only in both the moderate and severe TBI models (p's<0.05) (Figure 3). Although they did not significantly differ in the moderate TBI model, the animals that received bone wax and bone flap displayed significantly larger cortical damage than the bone wax only group in the severe TBI model (p<0.05) (Figure 3). The smaller cortical damage seen in the bone flap treatment after moderate and severe TBI models did not significantly differ from the reduced cortical damage in the no reconstruction group (p's>0.05 for moderate and severe TBI, respectively).


Immediate, but not delayed, microsurgical skull reconstruction exacerbates brain damage in experimental traumatic brain injury model.

Glover LE, Tajiri N, Lau T, Kaneko Y, van Loveren H, Borlongan CV - PLoS ONE (2012)

TTC Immediate skull reconstruction with bone wax alone or in combination with bone flap exacerbates cortical damage in TBI.TTC analysis of moderate (Figure 3A, quantified in C) and severe (Figure 3B, quantified in D) TBI revealed that immediate reconstruction with bone wax only or bone wax and bone flap significantly increased cortical damage compared to no reconstruction or reconstruction with only the bone flap. Of interest, delayed reconstruction at 2 days after TBI significantly reduced cortical damage compared to immediate reconstruction with bone wax only or bone wax and bone flap. Bars represent mean ± SEM. Asterisks (*) indicate p<0.05 vs. no reconstruction, immediate reconstruction with bone flap, and delayed reconstruction; # indicates p<0.05 vs. no reconstruction, bone flap, bone wax, and bone wax and flap; § indicates p<0.05 vs. bone wax.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3306278&req=5

pone-0033646-g003: TTC Immediate skull reconstruction with bone wax alone or in combination with bone flap exacerbates cortical damage in TBI.TTC analysis of moderate (Figure 3A, quantified in C) and severe (Figure 3B, quantified in D) TBI revealed that immediate reconstruction with bone wax only or bone wax and bone flap significantly increased cortical damage compared to no reconstruction or reconstruction with only the bone flap. Of interest, delayed reconstruction at 2 days after TBI significantly reduced cortical damage compared to immediate reconstruction with bone wax only or bone wax and bone flap. Bars represent mean ± SEM. Asterisks (*) indicate p<0.05 vs. no reconstruction, immediate reconstruction with bone flap, and delayed reconstruction; # indicates p<0.05 vs. no reconstruction, bone flap, bone wax, and bone wax and flap; § indicates p<0.05 vs. bone wax.
Mentions: As previously reported [3], [4], the CCI produced cortical damage in adult rats, with the severe model resulting in larger cortical alterations than the moderate model. TTC staining revealed that immediate skull reconstruction, in general, worsened the cortical damage (F4,15 = 100.622, p<0.0001 and F4,15 = 125.885, p<0.0001 for moderate and severe TBI, respectively) (Figure 3). Although it provided normalized skull structure, TTC staining revealed that immediate reconstruction with bone wax only and combined bone wax and bone flap significantly exacerbated cortical damage compared to the groups that received no skull reconstruction and bone flap only in both the moderate and severe TBI models (p's<0.05) (Figure 3). Although they did not significantly differ in the moderate TBI model, the animals that received bone wax and bone flap displayed significantly larger cortical damage than the bone wax only group in the severe TBI model (p<0.05) (Figure 3). The smaller cortical damage seen in the bone flap treatment after moderate and severe TBI models did not significantly differ from the reduced cortical damage in the no reconstruction group (p's>0.05 for moderate and severe TBI, respectively).

Bottom Line: Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull.In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts.Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction.

View Article: PubMed Central - PubMed

Affiliation: Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, United States of America.

ABSTRACT
Moderate to severe traumatic brain injury (TBI) often results in malformations to the skull. Aesthetic surgical maneuvers may offer normalized skull structure, but inconsistent surgical closure of the skull area accompanies TBI. We examined whether wound closure by replacement of skull flap and bone wax would allow aesthetic reconstruction of the TBI-induced skull damage without causing any detrimental effects to the cortical tissue. Adult male Sprague-Dawley rats were subjected to TBI using the controlled cortical impact (CCI) injury model. Immediately after the TBI surgery, animals were randomly assigned to skull flap replacement with or without bone wax or no bone reconstruction, then were euthanized at five days post-TBI for pathological analyses. The skull reconstruction provided normalized gross bone architecture, but 2,3,5-triphenyltetrazolium chloride and hematoxylin and eosin staining results revealed larger cortical damage in these animals compared to those that underwent no surgical maneuver at all. Brain swelling accompanied TBI, especially the severe model, that could have relieved the intracranial pressure in those animals with no skull reconstruction. In contrast, the immediate skull reconstruction produced an upregulation of the edema marker aquaporin-4 staining, which likely prevented the therapeutic benefits of brain swelling and resulted in larger cortical infarcts. Interestingly, TBI animals introduced to a delay in skull reconstruction (i.e., 2 days post-TBI) showed significantly reduced edema and infarcts compared to those exposed to immediate skull reconstruction. That immediate, but not delayed, skull reconstruction may exacerbate TBI-induced cortical tissue damage warrants a careful consideration of aesthetic repair of the skull in TBI.

Show MeSH
Related in: MedlinePlus