Limits...
A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells.

Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R - PLoS ONE (2012)

Bottom Line: Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels.The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.

ABSTRACT

Background: Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q(10) plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ(10) supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal findings: We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ(10) formulation (Qter®) and native CoQ(10). Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ(10) content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions: The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.

Show MeSH
Effect of Qter® treatment on ATP, protein content and cell growth in H9c2 cells.H9c2 cells were treated up to 72 hours with 100 nM Qter® and the ATP content was measured at 24, 48 and 72 hours by HPLC analysis (A). Panel B shows the intracellular ATP content after 24 hours treatment with 100 nM Qter® or native CoQ10, measured using luminescence ATP detection assay. Data are reported as arbitrary luminometric units and normalized on total protein content. (Values are means ± S.D.,n = 5, * p≤0.01 vs control). H9c2 cells treated with 100 nM Qter up to 72 hours were assayed for protein content at 24, 48 and 72 hours. Protein content was evaluated by Lowry method (C), (Values are means ± S.D., n = 5, * p≤0.05 vs. control). Cell growth was assessed by trypan blue exclusion method (D).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3303850&req=5

pone-0033712-g003: Effect of Qter® treatment on ATP, protein content and cell growth in H9c2 cells.H9c2 cells were treated up to 72 hours with 100 nM Qter® and the ATP content was measured at 24, 48 and 72 hours by HPLC analysis (A). Panel B shows the intracellular ATP content after 24 hours treatment with 100 nM Qter® or native CoQ10, measured using luminescence ATP detection assay. Data are reported as arbitrary luminometric units and normalized on total protein content. (Values are means ± S.D.,n = 5, * p≤0.01 vs control). H9c2 cells treated with 100 nM Qter up to 72 hours were assayed for protein content at 24, 48 and 72 hours. Protein content was evaluated by Lowry method (C), (Values are means ± S.D., n = 5, * p≤0.05 vs. control). Cell growth was assessed by trypan blue exclusion method (D).

Mentions: Effects on ATP and protein content and cellular growth were analyzed at 24, 48 and 72 hours after 100 nM Qter® supplementation (Fig. 3). HPLC analysis showed that the ATP content was significantly higher in H9c2 cells treated with 100 nM Qter® for 24 h compared to the control, while no differences were observable at later time points (Figure 3A). ATP increase was confirmed also by luminometric assay in cells treated with the same amount of Qter® while native CoQ10 failed to show any effect (Figure 3B). Interestingly, cellular protein content was normal at 24 hours, and after 48 h cells treated with 100 nM Qter® showed higher protein content (Figure 3C). Qter® administration has no effect on cell growth (Figure 3D).


A water soluble CoQ10 formulation improves intracellular distribution and promotes mitochondrial respiration in cultured cells.

Bergamini C, Moruzzi N, Sblendido A, Lenaz G, Fato R - PLoS ONE (2012)

Effect of Qter® treatment on ATP, protein content and cell growth in H9c2 cells.H9c2 cells were treated up to 72 hours with 100 nM Qter® and the ATP content was measured at 24, 48 and 72 hours by HPLC analysis (A). Panel B shows the intracellular ATP content after 24 hours treatment with 100 nM Qter® or native CoQ10, measured using luminescence ATP detection assay. Data are reported as arbitrary luminometric units and normalized on total protein content. (Values are means ± S.D.,n = 5, * p≤0.01 vs control). H9c2 cells treated with 100 nM Qter up to 72 hours were assayed for protein content at 24, 48 and 72 hours. Protein content was evaluated by Lowry method (C), (Values are means ± S.D., n = 5, * p≤0.05 vs. control). Cell growth was assessed by trypan blue exclusion method (D).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3303850&req=5

pone-0033712-g003: Effect of Qter® treatment on ATP, protein content and cell growth in H9c2 cells.H9c2 cells were treated up to 72 hours with 100 nM Qter® and the ATP content was measured at 24, 48 and 72 hours by HPLC analysis (A). Panel B shows the intracellular ATP content after 24 hours treatment with 100 nM Qter® or native CoQ10, measured using luminescence ATP detection assay. Data are reported as arbitrary luminometric units and normalized on total protein content. (Values are means ± S.D.,n = 5, * p≤0.01 vs control). H9c2 cells treated with 100 nM Qter up to 72 hours were assayed for protein content at 24, 48 and 72 hours. Protein content was evaluated by Lowry method (C), (Values are means ± S.D., n = 5, * p≤0.05 vs. control). Cell growth was assessed by trypan blue exclusion method (D).
Mentions: Effects on ATP and protein content and cellular growth were analyzed at 24, 48 and 72 hours after 100 nM Qter® supplementation (Fig. 3). HPLC analysis showed that the ATP content was significantly higher in H9c2 cells treated with 100 nM Qter® for 24 h compared to the control, while no differences were observable at later time points (Figure 3A). ATP increase was confirmed also by luminometric assay in cells treated with the same amount of Qter® while native CoQ10 failed to show any effect (Figure 3B). Interestingly, cellular protein content was normal at 24 hours, and after 48 h cells treated with 100 nM Qter® showed higher protein content (Figure 3C). Qter® administration has no effect on cell growth (Figure 3D).

Bottom Line: Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels.The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.

ABSTRACT

Background: Mitochondria are both the cellular powerhouse and the major source of reactive oxygen species. Coenzyme Q(10) plays a key role in mitochondrial energy production and is recognized as a powerful antioxidant. For these reasons it can be argued that higher mitochondrial ubiquinone levels may enhance the energy state and protect from oxidative stress. Despite the large number of clinical studies on the effect of CoQ(10) supplementation, there are very few experimental data about the mitochondrial ubiquinone content and the cellular bioenergetic state after supplementation. Controversial clinical and in vitro results are mainly due to the high hydrophobicity of this compound, which reduces its bioavailability.

Principal findings: We measured the cellular and mitochondrial ubiquinone content in two cell lines (T67 and H9c2) after supplementation with a hydrophilic CoQ(10) formulation (Qter®) and native CoQ(10). Our results show that the water soluble formulation is more efficient in increasing ubiquinone levels. We have evaluated the bioenergetics effect of ubiquinone treatment, demonstrating that intracellular CoQ(10) content after Qter supplementation positively correlates with an improved mitochondrial functionality (increased oxygen consumption rate, transmembrane potential, ATP synthesis) and resistance to oxidative stress.

Conclusions: The improved cellular energy metabolism related to increased CoQ(10) content represents a strong rationale for the clinical use of coenzyme Q(10) and highlights the biological effects of Qter®, that make it the eligible CoQ(10) formulation for the ubiquinone supplementation.

Show MeSH