Limits...
Species association of hepatitis B virus (HBV) in non-human apes; evidence for recombination between gorilla and chimpanzee variants.

Lyons S, Sharp C, LeBreton M, Djoko CF, Kiyang JA, Lankester F, Bibila TG, Tamoufé U, Fair J, Wolfe ND, Simmonds P - PLoS ONE (2012)

Bottom Line: Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population.Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies.Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.

View Article: PubMed Central - PubMed

Affiliation: Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom. S.M.K.Lyons@sms.ed.ac.uk

ABSTRACT
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.

Show MeSH

Related in: MedlinePlus

Tree Order Scan of HBV sequences.Figure 2(a). TreeOrder Scan of HBV sequences, indicating positions of individual sequences (y axis) in Phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by genotype and host species, as indicated by the labels in left and right margin: genotype A, purple; B, light blue; C, wine; D, emerald; E, royal blue; F, orange; G, pale green; H, navy; Gorilla, blue (Gor); Chimpanzee, green (Pan); and Woolly monkey (WM-out-group on line 1), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, pink FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and purple AF498266 P.t.s2(b). Tree Order Scan of HBV sequences, indicating positions of individual sequences (y axis) in phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by host species and sub-species of chimpanzee, as indicated by the labels in left and right margin: Gorilla gorilla, blue (Gor); Pan troglodytes troglodytes, yellow (Ptt); Pan troglodytes ellioti, green (Pte); Pan troglodytes verus, purple (Ptv); Pan troglodytes schweinfurthii, violet (Pts); and Hylobates pileatus (Hyl) (out-group-line 1-GII), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, brown FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and blue AF498266 P.t.s.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3303819&req=5

pone-0033430-g002: Tree Order Scan of HBV sequences.Figure 2(a). TreeOrder Scan of HBV sequences, indicating positions of individual sequences (y axis) in Phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by genotype and host species, as indicated by the labels in left and right margin: genotype A, purple; B, light blue; C, wine; D, emerald; E, royal blue; F, orange; G, pale green; H, navy; Gorilla, blue (Gor); Chimpanzee, green (Pan); and Woolly monkey (WM-out-group on line 1), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, pink FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and purple AF498266 P.t.s2(b). Tree Order Scan of HBV sequences, indicating positions of individual sequences (y axis) in phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by host species and sub-species of chimpanzee, as indicated by the labels in left and right margin: Gorilla gorilla, blue (Gor); Pan troglodytes troglodytes, yellow (Ptt); Pan troglodytes ellioti, green (Pte); Pan troglodytes verus, purple (Ptv); Pan troglodytes schweinfurthii, violet (Pts); and Hylobates pileatus (Hyl) (out-group-line 1-GII), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, brown FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and blue AF498266 P.t.s.

Mentions: Phylogenetic trees of 200 bp fragments incrementing by 50 bp across the entire genome were constructed to identify changes in phylogeny potentially indicative of recombination events. This procedure was automated by the program TreeOrder Scan [22] in SSE v1.0 [Manuscript in preparation]. The tree position of each sequence across the genome is recorded (y-axis) and colour-coded by HBV genotype and species (Fig. 2a) and by sub-species (Fig. 2b). Changes in the tree order of individual sequences or genotypes with 70% or greater bootstrap support are indicative of alterations in the phylogenetic relationships of clades and identify potential recombination breakpoints.


Species association of hepatitis B virus (HBV) in non-human apes; evidence for recombination between gorilla and chimpanzee variants.

Lyons S, Sharp C, LeBreton M, Djoko CF, Kiyang JA, Lankester F, Bibila TG, Tamoufé U, Fair J, Wolfe ND, Simmonds P - PLoS ONE (2012)

Tree Order Scan of HBV sequences.Figure 2(a). TreeOrder Scan of HBV sequences, indicating positions of individual sequences (y axis) in Phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by genotype and host species, as indicated by the labels in left and right margin: genotype A, purple; B, light blue; C, wine; D, emerald; E, royal blue; F, orange; G, pale green; H, navy; Gorilla, blue (Gor); Chimpanzee, green (Pan); and Woolly monkey (WM-out-group on line 1), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, pink FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and purple AF498266 P.t.s2(b). Tree Order Scan of HBV sequences, indicating positions of individual sequences (y axis) in phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by host species and sub-species of chimpanzee, as indicated by the labels in left and right margin: Gorilla gorilla, blue (Gor); Pan troglodytes troglodytes, yellow (Ptt); Pan troglodytes ellioti, green (Pte); Pan troglodytes verus, purple (Ptv); Pan troglodytes schweinfurthii, violet (Pts); and Hylobates pileatus (Hyl) (out-group-line 1-GII), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, brown FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and blue AF498266 P.t.s.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3303819&req=5

pone-0033430-g002: Tree Order Scan of HBV sequences.Figure 2(a). TreeOrder Scan of HBV sequences, indicating positions of individual sequences (y axis) in Phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by genotype and host species, as indicated by the labels in left and right margin: genotype A, purple; B, light blue; C, wine; D, emerald; E, royal blue; F, orange; G, pale green; H, navy; Gorilla, blue (Gor); Chimpanzee, green (Pan); and Woolly monkey (WM-out-group on line 1), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, pink FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and purple AF498266 P.t.s2(b). Tree Order Scan of HBV sequences, indicating positions of individual sequences (y axis) in phylogenetic trees generated from sequential 250-base sequence fragments, incrementing by 50 bases. Changes in sequence order as a result of changes in phylogeny at the 70% bootstrap level are shown. Sequences are colour coded by host species and sub-species of chimpanzee, as indicated by the labels in left and right margin: Gorilla gorilla, blue (Gor); Pan troglodytes troglodytes, yellow (Ptt); Pan troglodytes ellioti, green (Pte); Pan troglodytes verus, purple (Ptv); Pan troglodytes schweinfurthii, violet (Pts); and Hylobates pileatus (Hyl) (out-group-line 1-GII), red. For comparison the Tree Order Scan has been aligned with scale genome of HBV (top panel). Recombinant sequences are highlighted as by dashed lines; black gorilla/P.t.e ECO50003LIP3, green FJ798099 P.t.e/P.t.t, brown FJ798098 P.t.e/P.t.t, orange AB046525 P.t.t and blue AF498266 P.t.s.
Mentions: Phylogenetic trees of 200 bp fragments incrementing by 50 bp across the entire genome were constructed to identify changes in phylogeny potentially indicative of recombination events. This procedure was automated by the program TreeOrder Scan [22] in SSE v1.0 [Manuscript in preparation]. The tree position of each sequence across the genome is recorded (y-axis) and colour-coded by HBV genotype and species (Fig. 2a) and by sub-species (Fig. 2b). Changes in the tree order of individual sequences or genotypes with 70% or greater bootstrap support are indicative of alterations in the phylogenetic relationships of clades and identify potential recombination breakpoints.

Bottom Line: Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population.Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies.Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.

View Article: PubMed Central - PubMed

Affiliation: Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom. S.M.K.Lyons@sms.ed.ac.uk

ABSTRACT
Hepatitis B virus (HBV) infections are widely distributed in humans, infecting approximately one third of the world's population. HBV variants have also been detected and genetically characterised from Old World apes; Gorilla gorilla (gorilla), Pan troglodytes (chimpanzee), Pongo pygmaeus (orang-utan), Nomascus nastusus and Hylobates pileatus (gibbons) and from the New World monkey, Lagothrix lagotricha (woolly monkey). To investigate species-specificity and potential for cross species transmission of HBV between sympatric species of apes (such as gorillas and chimpanzees in Central Africa) or between humans and chimpanzees or gorillas, variants of HBV infecting captive wild-born non-human primates were genetically characterised. 9 of 62 chimpanzees (11.3%) and two from 11 gorillas (18%) were HBV-infected (15% combined frequency), while other Old world monkey species were negative. Complete genome sequences were obtained from six of the infected chimpanzee and both gorillas; those from P. t .ellioti grouped with previously characterised variants from this subspecies. However, variants recovered from P. t. troglodytes HBV variants also grouped within this clade, indicative of transmission between sub-species, forming a paraphyletic clade. The two gorilla viruses were phylogenetically distinct from chimpanzee and human variants although one showed evidence for a recombination event with a P.t.e.-derived HBV variant in the partial X and core gene region. Both of these observations provide evidence for circulation of HBV between different species and sub-species of non-human primates, a conclusion that differs from the hypothesis if of strict host specificity of HBV genotypes.

Show MeSH
Related in: MedlinePlus