Limits...
Visual-gustatory interaction: orbitofrontal and insular cortices mediate the effect of high-calorie visual food cues on taste pleasantness.

Ohla K, Toepel U, le Coutre J, Hudry J - PLoS ONE (2012)

Bottom Line: A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms.Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness.Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

View Article: PubMed Central - PubMed

Affiliation: Perception Physiology, Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland.

ABSTRACT
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

Show MeSH

Related in: MedlinePlus

LAURA source estimations.Statistical contrasts of LAURA source estimations computed for taste stimuli when preceded by high-calorie versus low-calorie images. Time periods were obtained from the topographical cluster analysis. Color scales represent t-values with positive values indicating stronger activity during taste perception preceded by high-calorie than low-calorie images and negative values indicating increased activity when taste was preceded by low- as compared with high-calorie images. MFG = middle frontal gyrus, INS = insula, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, PHI = parahippocampal gyrus, PCG = postcentral gyrus, IOG = inferior occipital gyrus.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3303800&req=5

pone-0032434-g003: LAURA source estimations.Statistical contrasts of LAURA source estimations computed for taste stimuli when preceded by high-calorie versus low-calorie images. Time periods were obtained from the topographical cluster analysis. Color scales represent t-values with positive values indicating stronger activity during taste perception preceded by high-calorie than low-calorie images and negative values indicating increased activity when taste was preceded by low- as compared with high-calorie images. MFG = middle frontal gyrus, INS = insula, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, PHI = parahippocampal gyrus, PCG = postcentral gyrus, IOG = inferior occipital gyrus.

Mentions: To identify brain areas that reveal differential activation as a function of the image category preceding the taste, we contrasted the neural source activity during taste perception following the viewing of high-calorie food as opposed to low-calorie food images. For this purpose, the obtained stable topographic cluster periods (cf. Figure 2) served as input for the neural source estimation algorithm (LAURA). Significant differences between taste perception following high-calorie and low-calorie food viewing were obtained over the three time intervals of interest, i.e. from 92–174 ms, from 176–236 ms and 357–500 ms. Figure 3 illustrates these differences with the Talairach coordinates of activation difference maxima indicated. Positive t-values in Figure 3 evince higher neural source activity when the taste stimuli were preceded by images depicting high-calorie food as compared to low-calorie food images and vice versa.


Visual-gustatory interaction: orbitofrontal and insular cortices mediate the effect of high-calorie visual food cues on taste pleasantness.

Ohla K, Toepel U, le Coutre J, Hudry J - PLoS ONE (2012)

LAURA source estimations.Statistical contrasts of LAURA source estimations computed for taste stimuli when preceded by high-calorie versus low-calorie images. Time periods were obtained from the topographical cluster analysis. Color scales represent t-values with positive values indicating stronger activity during taste perception preceded by high-calorie than low-calorie images and negative values indicating increased activity when taste was preceded by low- as compared with high-calorie images. MFG = middle frontal gyrus, INS = insula, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, PHI = parahippocampal gyrus, PCG = postcentral gyrus, IOG = inferior occipital gyrus.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3303800&req=5

pone-0032434-g003: LAURA source estimations.Statistical contrasts of LAURA source estimations computed for taste stimuli when preceded by high-calorie versus low-calorie images. Time periods were obtained from the topographical cluster analysis. Color scales represent t-values with positive values indicating stronger activity during taste perception preceded by high-calorie than low-calorie images and negative values indicating increased activity when taste was preceded by low- as compared with high-calorie images. MFG = middle frontal gyrus, INS = insula, ACC = anterior cingulate cortex, OFC = orbitofrontal cortex, PHI = parahippocampal gyrus, PCG = postcentral gyrus, IOG = inferior occipital gyrus.
Mentions: To identify brain areas that reveal differential activation as a function of the image category preceding the taste, we contrasted the neural source activity during taste perception following the viewing of high-calorie food as opposed to low-calorie food images. For this purpose, the obtained stable topographic cluster periods (cf. Figure 2) served as input for the neural source estimation algorithm (LAURA). Significant differences between taste perception following high-calorie and low-calorie food viewing were obtained over the three time intervals of interest, i.e. from 92–174 ms, from 176–236 ms and 357–500 ms. Figure 3 illustrates these differences with the Talairach coordinates of activation difference maxima indicated. Positive t-values in Figure 3 evince higher neural source activity when the taste stimuli were preceded by images depicting high-calorie food as compared to low-calorie food images and vice versa.

Bottom Line: A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms.Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness.Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

View Article: PubMed Central - PubMed

Affiliation: Perception Physiology, Nestlé Research Center, Vers-chez-les-Blanc, Lausanne, Switzerland.

ABSTRACT
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.

Show MeSH
Related in: MedlinePlus