Limits...
Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP.Z-Leprfa/Izm rats.

Yoshitomi H, Guo X, Liu T, Gao M - Nutr Metab (Lond) (2012)

Bottom Line: These were thought to be associated with the decrease of the triglyceride content in the liver because AMPK and PPARα in liver tissue control energy metabolism or lipid composition.Our results indicate that administration of GLE may have preventive effects of hepatic accumulation and ameliorated hepatic insulin resistance by enhancing the adiponectin beta-oxidation system.Guava leaf may be potentially useful for hepatic steatosis without the side effects of long-term treatments.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan. gaoming@mukogawa-u.ac.jp.

ABSTRACT

Background: In recent years, the number of people with metabolic syndrome has continued to rise because of changing eating habits, and accompanying hepatic steatosis patients have also increased. This study examined the effect of guava leaf extract on liver fat accumulation using SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a metabolic syndrome model animal.

Method: Seven-week-old male SHRSP/ZF rats were divided into two groups, a control group and a guava leaf extract (GLE) group. We gave 2 g/kg/day GLE or water by forced administration for 6 weeks. After the experimental period, the rats were sacrificed and organ weight, hepatic lipids, serum aminotransferase and liver pathology were examined. To search for a possible mechanism, we examined the changes of key enzyme and transcriptional factors involved in hepatic fatty acid beta-oxidation.

Results: The triglyceride content of the liver significantly decreased in the GLE group in comparison with the control group, and decreased fat-drop formation in the liver tissue graft in the GLE group was observed. In addition, the improvement of liver organization impairments with fat accumulation restriction was suggested because blood AST and ALT in the GLE group significantly decreased. Furthermore, it was supposed that the activity of AMPK and PPARα significantly increased in the GLE group via the increase of adiponectin receptors. These were thought to be associated with the decrease of the triglyceride content in the liver because AMPK and PPARα in liver tissue control energy metabolism or lipid composition. On the other hand, insulin resistance was suggested to have improved by the fatty liver improvement in GLE.

Conclusion: Our results indicate that administration of GLE may have preventive effects of hepatic accumulation and ameliorated hepatic insulin resistance by enhancing the adiponectin beta-oxidation system. Guava leaf may be potentially useful for hepatic steatosis without the side effects of long-term treatments.

No MeSH data available.


Related in: MedlinePlus

Effect of GLE on hepatic CPT activity in rats. Hepatic CPT activity in rats administered the control or GLE for 6 weeks. Data are the mean ± SEM of n = 4 rats. * p < 0.05 different from the control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3298795&req=5

Figure 4: Effect of GLE on hepatic CPT activity in rats. Hepatic CPT activity in rats administered the control or GLE for 6 weeks. Data are the mean ± SEM of n = 4 rats. * p < 0.05 different from the control group.

Mentions: We researched the expression of genes and activity involved in fatty acid beta-oxidation enzyme. First, we measured the expression genes, medium-chain acyl-CoA dehydrogenase (MCAD) and acyl-CoA oxidase (ACO), which are rate-limiting fatty acid beta-oxidation enzymes in mitochondria and peroxisome. In the GLE group, both were elevated compared with the control group (Figure 3A; 1.145 ± 0.094 vs 1.568 ± 0.117: p = 0.031 n = 4, and 3B; 1.296 ± 0.343vs 1.664 ± 0.036: p = 0.407 n = 4; differences were not statistically significant). Similarly, mitochondrial fatty acid beta-oxidation in the liver was increased after GLE administration, as measured using hepatic CPT activity (Figure 4; 83.65 ± 7.346 vs 107.65 ± 3.488 U/L: p = 0.03 n = 4).


Guava leaf extracts alleviate fatty liver via expression of adiponectin receptors in SHRSP.Z-Leprfa/Izm rats.

Yoshitomi H, Guo X, Liu T, Gao M - Nutr Metab (Lond) (2012)

Effect of GLE on hepatic CPT activity in rats. Hepatic CPT activity in rats administered the control or GLE for 6 weeks. Data are the mean ± SEM of n = 4 rats. * p < 0.05 different from the control group.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3298795&req=5

Figure 4: Effect of GLE on hepatic CPT activity in rats. Hepatic CPT activity in rats administered the control or GLE for 6 weeks. Data are the mean ± SEM of n = 4 rats. * p < 0.05 different from the control group.
Mentions: We researched the expression of genes and activity involved in fatty acid beta-oxidation enzyme. First, we measured the expression genes, medium-chain acyl-CoA dehydrogenase (MCAD) and acyl-CoA oxidase (ACO), which are rate-limiting fatty acid beta-oxidation enzymes in mitochondria and peroxisome. In the GLE group, both were elevated compared with the control group (Figure 3A; 1.145 ± 0.094 vs 1.568 ± 0.117: p = 0.031 n = 4, and 3B; 1.296 ± 0.343vs 1.664 ± 0.036: p = 0.407 n = 4; differences were not statistically significant). Similarly, mitochondrial fatty acid beta-oxidation in the liver was increased after GLE administration, as measured using hepatic CPT activity (Figure 4; 83.65 ± 7.346 vs 107.65 ± 3.488 U/L: p = 0.03 n = 4).

Bottom Line: These were thought to be associated with the decrease of the triglyceride content in the liver because AMPK and PPARα in liver tissue control energy metabolism or lipid composition.Our results indicate that administration of GLE may have preventive effects of hepatic accumulation and ameliorated hepatic insulin resistance by enhancing the adiponectin beta-oxidation system.Guava leaf may be potentially useful for hepatic steatosis without the side effects of long-term treatments.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan. gaoming@mukogawa-u.ac.jp.

ABSTRACT

Background: In recent years, the number of people with metabolic syndrome has continued to rise because of changing eating habits, and accompanying hepatic steatosis patients have also increased. This study examined the effect of guava leaf extract on liver fat accumulation using SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP/ZF), which are a metabolic syndrome model animal.

Method: Seven-week-old male SHRSP/ZF rats were divided into two groups, a control group and a guava leaf extract (GLE) group. We gave 2 g/kg/day GLE or water by forced administration for 6 weeks. After the experimental period, the rats were sacrificed and organ weight, hepatic lipids, serum aminotransferase and liver pathology were examined. To search for a possible mechanism, we examined the changes of key enzyme and transcriptional factors involved in hepatic fatty acid beta-oxidation.

Results: The triglyceride content of the liver significantly decreased in the GLE group in comparison with the control group, and decreased fat-drop formation in the liver tissue graft in the GLE group was observed. In addition, the improvement of liver organization impairments with fat accumulation restriction was suggested because blood AST and ALT in the GLE group significantly decreased. Furthermore, it was supposed that the activity of AMPK and PPARα significantly increased in the GLE group via the increase of adiponectin receptors. These were thought to be associated with the decrease of the triglyceride content in the liver because AMPK and PPARα in liver tissue control energy metabolism or lipid composition. On the other hand, insulin resistance was suggested to have improved by the fatty liver improvement in GLE.

Conclusion: Our results indicate that administration of GLE may have preventive effects of hepatic accumulation and ameliorated hepatic insulin resistance by enhancing the adiponectin beta-oxidation system. Guava leaf may be potentially useful for hepatic steatosis without the side effects of long-term treatments.

No MeSH data available.


Related in: MedlinePlus