Limits...
Prehospital trauma care reduces mortality. Ten-year results from a time-cohort and trauma audit study in Iraq.

Murad MK, Larsen S, Husum H - Scand J Trauma Resusc Emerg Med (2012)

Bottom Line: The study was conducted with a time-period cohort design. 37% of the study patients had serious injuries with Injury Severity Score ≥ 9.The mean prehospital transport time was 2.5 hours (95% CI 1.9 - 3.2).Delegating life-saving skills to paramedics and lay people is a key factor for efficient prehospital trauma systems in low-resource communities.

View Article: PubMed Central - HTML - PubMed

Affiliation: University Hospital North Norway, Tromso, Norway.

ABSTRACT

Background: Blunt implementation of Western trauma system models is not feasible in low-resource communities with long prehospital transit times. The aims of the study were to evaluate to which extent a low-cost prehospital trauma system reduces trauma deaths where prehospital transit times are long, and to identify specific life support interventions that contributed to survival.

Methods: In the study period from 1997 to 2006, 2,788 patients injured by land mines, war, and traffic accidents were managed by a chain-of-survival trauma system where non-graduate paramedics were the key care providers. The study was conducted with a time-period cohort design.

Results: 37% of the study patients had serious injuries with Injury Severity Score ≥ 9. The mean prehospital transport time was 2.5 hours (95% CI 1.9 - 3.2). During the ten-year study period trauma mortality was reduced from 17% (95% CI 15 -19) to 4% (95% CI 3.5 - 5), survival especially improving in major trauma victims. In most patients with airway problems, in chest injured, and in patients with external hemorrhage, simple life support measures were sufficient to improve physiological severity indicators.

Conclusion: In case of long prehospital transit times simple life support measures by paramedics and lay first responders reduce trauma mortality in major injuries. Delegating life-saving skills to paramedics and lay people is a key factor for efficient prehospital trauma systems in low-resource communities.

Show MeSH

Related in: MedlinePlus

Probabilistic model to identify unexpected survivors and unexpected fatalities. In the scatter plot, survivors and fatalities are grouped by predicted probabilities of death, and physiological severity scores registered at the first in-field encounter (PSS 1). Red rings mark the unexpected survivors and unexpected deaths. Unexpected survivors were defined as survivors with higher than 50% risk of death according to the probabilistic model; unexpected deaths were defined as fatalities with less than 25% risk of death. "Critical area" implies injuries to the head, neck or the torso.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3298775&req=5

Figure 4: Probabilistic model to identify unexpected survivors and unexpected fatalities. In the scatter plot, survivors and fatalities are grouped by predicted probabilities of death, and physiological severity scores registered at the first in-field encounter (PSS 1). Red rings mark the unexpected survivors and unexpected deaths. Unexpected survivors were defined as survivors with higher than 50% risk of death according to the probabilistic model; unexpected deaths were defined as fatalities with less than 25% risk of death. "Critical area" implies injuries to the head, neck or the torso.

Mentions: Diagnosis, category (blunt/penetrating), ISS, and PSS explained 77% of the variation in trauma mortality and gave a good fit with a ROC-AUC value of .99; ISS was the dominant predictor, alone yielding a ROC-AUC value of .98. Twenty seriously injured patients with ISS from 9 to 30 were identified as unexpected survivors, and there were 44 unexpected fatalities, all of them major trauma victims with ISS > 15 (Figure 4). In the group of unexpected survivors, all patients were in poor physiological condition at the first in-field encounter with a PSS ≤ 6 but had improving physiological indicators during the prehospital phase. Twelve patients with traumatic brain injury were among the unexpected fatalities with critical area injuries, all twelve dying within 48 hours after injury. These deaths occurred before neurosurgical service was established at the referral hospitals in 2006. Also in the group of unexpected fatalities were three cases with abdominal hemorrhage dying immediately on admission after two-hours' prehospital transit time. Six patients diagnosed as "extremity injury" suffered unexpected deaths due to associated head injuries. Among the 13 unexpected deaths with multiple major injuries, seven patients were admitted with close to normal physiological scores but died from internal hemorrhage in hospital hours after admission, one of them a patient with traumatic brain injury who did not undergo neurosurgery; four of the seven patients were injured by fragmentation mines. Ten burn fatalities with probability of death > 0.25 had PSS > 10 on admission but died within one week after the injury from infectious complications and/or organ failure.


Prehospital trauma care reduces mortality. Ten-year results from a time-cohort and trauma audit study in Iraq.

Murad MK, Larsen S, Husum H - Scand J Trauma Resusc Emerg Med (2012)

Probabilistic model to identify unexpected survivors and unexpected fatalities. In the scatter plot, survivors and fatalities are grouped by predicted probabilities of death, and physiological severity scores registered at the first in-field encounter (PSS 1). Red rings mark the unexpected survivors and unexpected deaths. Unexpected survivors were defined as survivors with higher than 50% risk of death according to the probabilistic model; unexpected deaths were defined as fatalities with less than 25% risk of death. "Critical area" implies injuries to the head, neck or the torso.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3298775&req=5

Figure 4: Probabilistic model to identify unexpected survivors and unexpected fatalities. In the scatter plot, survivors and fatalities are grouped by predicted probabilities of death, and physiological severity scores registered at the first in-field encounter (PSS 1). Red rings mark the unexpected survivors and unexpected deaths. Unexpected survivors were defined as survivors with higher than 50% risk of death according to the probabilistic model; unexpected deaths were defined as fatalities with less than 25% risk of death. "Critical area" implies injuries to the head, neck or the torso.
Mentions: Diagnosis, category (blunt/penetrating), ISS, and PSS explained 77% of the variation in trauma mortality and gave a good fit with a ROC-AUC value of .99; ISS was the dominant predictor, alone yielding a ROC-AUC value of .98. Twenty seriously injured patients with ISS from 9 to 30 were identified as unexpected survivors, and there were 44 unexpected fatalities, all of them major trauma victims with ISS > 15 (Figure 4). In the group of unexpected survivors, all patients were in poor physiological condition at the first in-field encounter with a PSS ≤ 6 but had improving physiological indicators during the prehospital phase. Twelve patients with traumatic brain injury were among the unexpected fatalities with critical area injuries, all twelve dying within 48 hours after injury. These deaths occurred before neurosurgical service was established at the referral hospitals in 2006. Also in the group of unexpected fatalities were three cases with abdominal hemorrhage dying immediately on admission after two-hours' prehospital transit time. Six patients diagnosed as "extremity injury" suffered unexpected deaths due to associated head injuries. Among the 13 unexpected deaths with multiple major injuries, seven patients were admitted with close to normal physiological scores but died from internal hemorrhage in hospital hours after admission, one of them a patient with traumatic brain injury who did not undergo neurosurgery; four of the seven patients were injured by fragmentation mines. Ten burn fatalities with probability of death > 0.25 had PSS > 10 on admission but died within one week after the injury from infectious complications and/or organ failure.

Bottom Line: The study was conducted with a time-period cohort design. 37% of the study patients had serious injuries with Injury Severity Score ≥ 9.The mean prehospital transport time was 2.5 hours (95% CI 1.9 - 3.2).Delegating life-saving skills to paramedics and lay people is a key factor for efficient prehospital trauma systems in low-resource communities.

View Article: PubMed Central - HTML - PubMed

Affiliation: University Hospital North Norway, Tromso, Norway.

ABSTRACT

Background: Blunt implementation of Western trauma system models is not feasible in low-resource communities with long prehospital transit times. The aims of the study were to evaluate to which extent a low-cost prehospital trauma system reduces trauma deaths where prehospital transit times are long, and to identify specific life support interventions that contributed to survival.

Methods: In the study period from 1997 to 2006, 2,788 patients injured by land mines, war, and traffic accidents were managed by a chain-of-survival trauma system where non-graduate paramedics were the key care providers. The study was conducted with a time-period cohort design.

Results: 37% of the study patients had serious injuries with Injury Severity Score ≥ 9. The mean prehospital transport time was 2.5 hours (95% CI 1.9 - 3.2). During the ten-year study period trauma mortality was reduced from 17% (95% CI 15 -19) to 4% (95% CI 3.5 - 5), survival especially improving in major trauma victims. In most patients with airway problems, in chest injured, and in patients with external hemorrhage, simple life support measures were sufficient to improve physiological severity indicators.

Conclusion: In case of long prehospital transit times simple life support measures by paramedics and lay first responders reduce trauma mortality in major injuries. Delegating life-saving skills to paramedics and lay people is a key factor for efficient prehospital trauma systems in low-resource communities.

Show MeSH
Related in: MedlinePlus