Limits...
Hantavirus infections in humans and animals, China.

Zhang YZ, Zou Y, Fu ZF, Plyusnin A - Emerging Infect. Dis. (2010)

Bottom Line: After implementation of comprehensive preventive measures, including vaccination, in the past decade in China, incidence of HFRS has dramatically decreased; only 11,248 HFRS cases were reported in 2007.Mortality rates also declined from the highest level of 14.2% in 1969 to ?1% during 1995-2007.However, the numbers of HFRS cases and deaths in China remain the highest in the world.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Infectious Disease Control and Prevention, Beijing, People's Republic of China.

ABSTRACT
Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in the People's Republic of China. Although 7 sero/genotypes of hantaviruses have been found in rodents, only Hantaan virus (carried by Apodemus agrarius mice) and Seoul virus (carried by Rattus norvegicus rats) reportedly cause disease in humans. During 1950-2007, a total of 1,557,622 cases of HFRS in humans and 46,427 deaths (3%) were reported in China. HFRS has been reported in 29 of 31 provinces in China. After implementation of comprehensive preventive measures, including vaccination, in the past decade in China, incidence of HFRS has dramatically decreased; only 11,248 HFRS cases were reported in 2007. Mortality rates also declined from the highest level of 14.2% in 1969 to ?1% during 1995-2007. However, the numbers of HFRS cases and deaths in China remain the highest in the world.

Show MeSH

Related in: MedlinePlus

Phylogenetic trees of Hantaan virus (HTNV) variants according to the small segment (A) and medium segment (B) coding sequences. PHYLIP program package version 3.65 (http://helix.nih.gov/Applications/phylip.html) was used to construct the phylogenetic trees; the neighbor-joining method was used. Bootstrap values were calculated from 1,000 replicates; only values >50% are shown at the branch nodes. The trees constructed using the maximum-likelihood method (not shown) had similar topology. Scale bars indicate nucleotide substitutions per site. Colors (blue and red) highlight viruses of interest from China. SNV, Sin Nombre virus; DOBV, Dobrava-Belgrade virus; SEOV, Seoul virus; DBSV, Da Bie Shan virus.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3298307&req=5

Figure 3: Phylogenetic trees of Hantaan virus (HTNV) variants according to the small segment (A) and medium segment (B) coding sequences. PHYLIP program package version 3.65 (http://helix.nih.gov/Applications/phylip.html) was used to construct the phylogenetic trees; the neighbor-joining method was used. Bootstrap values were calculated from 1,000 replicates; only values >50% are shown at the branch nodes. The trees constructed using the maximum-likelihood method (not shown) had similar topology. Scale bars indicate nucleotide substitutions per site. Colors (blue and red) highlight viruses of interest from China. SNV, Sin Nombre virus; DOBV, Dobrava-Belgrade virus; SEOV, Seoul virus; DBSV, Da Bie Shan virus.

Mentions: Antigenic and genetic studies of hantaviruses isolated from HFRS patients and rodents in China found 3 hantaviruses in China: HTNV, SEOV, and Da Bie Shan virus carried by Chinese white-bellied rats (Niviventer confucianus) (Table 2, Figure 3) (11–13). Recently, we found Puumala virus-like Hokkaido virus in Myodes rufocanus voles (29), Khabarovsk virus in Microtus maximowiczii voles, Vladivostok virus in Microtus fortis, subspecies pelliceus voles (30), and a presumably novel Yuanjiang virus in M. fortis, subspecies calamorum voles (8). So far, only HTNV and SEOV are known to cause HFRS in China (8–11). Because A. agrarius and R. norvegicus rodents are the predominant carriers and are distributed nationwide, HTNV and SEOV are obviously the major threat for HFRS in China.


Hantavirus infections in humans and animals, China.

Zhang YZ, Zou Y, Fu ZF, Plyusnin A - Emerging Infect. Dis. (2010)

Phylogenetic trees of Hantaan virus (HTNV) variants according to the small segment (A) and medium segment (B) coding sequences. PHYLIP program package version 3.65 (http://helix.nih.gov/Applications/phylip.html) was used to construct the phylogenetic trees; the neighbor-joining method was used. Bootstrap values were calculated from 1,000 replicates; only values >50% are shown at the branch nodes. The trees constructed using the maximum-likelihood method (not shown) had similar topology. Scale bars indicate nucleotide substitutions per site. Colors (blue and red) highlight viruses of interest from China. SNV, Sin Nombre virus; DOBV, Dobrava-Belgrade virus; SEOV, Seoul virus; DBSV, Da Bie Shan virus.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3298307&req=5

Figure 3: Phylogenetic trees of Hantaan virus (HTNV) variants according to the small segment (A) and medium segment (B) coding sequences. PHYLIP program package version 3.65 (http://helix.nih.gov/Applications/phylip.html) was used to construct the phylogenetic trees; the neighbor-joining method was used. Bootstrap values were calculated from 1,000 replicates; only values >50% are shown at the branch nodes. The trees constructed using the maximum-likelihood method (not shown) had similar topology. Scale bars indicate nucleotide substitutions per site. Colors (blue and red) highlight viruses of interest from China. SNV, Sin Nombre virus; DOBV, Dobrava-Belgrade virus; SEOV, Seoul virus; DBSV, Da Bie Shan virus.
Mentions: Antigenic and genetic studies of hantaviruses isolated from HFRS patients and rodents in China found 3 hantaviruses in China: HTNV, SEOV, and Da Bie Shan virus carried by Chinese white-bellied rats (Niviventer confucianus) (Table 2, Figure 3) (11–13). Recently, we found Puumala virus-like Hokkaido virus in Myodes rufocanus voles (29), Khabarovsk virus in Microtus maximowiczii voles, Vladivostok virus in Microtus fortis, subspecies pelliceus voles (30), and a presumably novel Yuanjiang virus in M. fortis, subspecies calamorum voles (8). So far, only HTNV and SEOV are known to cause HFRS in China (8–11). Because A. agrarius and R. norvegicus rodents are the predominant carriers and are distributed nationwide, HTNV and SEOV are obviously the major threat for HFRS in China.

Bottom Line: After implementation of comprehensive preventive measures, including vaccination, in the past decade in China, incidence of HFRS has dramatically decreased; only 11,248 HFRS cases were reported in 2007.Mortality rates also declined from the highest level of 14.2% in 1969 to ?1% during 1995-2007.However, the numbers of HFRS cases and deaths in China remain the highest in the world.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory for Infectious Disease Control and Prevention, Beijing, People's Republic of China.

ABSTRACT
Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in the People's Republic of China. Although 7 sero/genotypes of hantaviruses have been found in rodents, only Hantaan virus (carried by Apodemus agrarius mice) and Seoul virus (carried by Rattus norvegicus rats) reportedly cause disease in humans. During 1950-2007, a total of 1,557,622 cases of HFRS in humans and 46,427 deaths (3%) were reported in China. HFRS has been reported in 29 of 31 provinces in China. After implementation of comprehensive preventive measures, including vaccination, in the past decade in China, incidence of HFRS has dramatically decreased; only 11,248 HFRS cases were reported in 2007. Mortality rates also declined from the highest level of 14.2% in 1969 to ?1% during 1995-2007. However, the numbers of HFRS cases and deaths in China remain the highest in the world.

Show MeSH
Related in: MedlinePlus