Limits...
Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

Di Franco C, Elia A, Spagnolo V, Scamarcio G, Lugarà PM, Ieva E, Cioffi N, Torsi L, Bruno G, Losurdo M, Garcia MA, Wolter SD, Brown A, Ricco M - Sensors (Basel) (2009)

Bottom Line: In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices.Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization.Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

View Article: PubMed Central - PubMed

Affiliation: CNR-INFM Regional Laboratory LIT3, via Amendola 173, 70126 Bari, Italy; E-Mails: angela.elia@fisica.uniba.it (A.E.); spagnolo@fisica.uniba.it (V.S.); scamarcio@fisica.uniba.it (G.S.); lugara@fisica.uniba.it (P.M.L.).

ABSTRACT
Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

No MeSH data available.


VDP data from a hemin functionalized InAs sample.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3297121&req=5

f11-sensors-09-03337: VDP data from a hemin functionalized InAs sample.

Mentions: The sheet resistivity response of a hemin functionalized AlGaN/GaN HFET structure is shown in Figure 10. These early, initial results show that the functionalized samples show significant changes in sheet resistivity when exposed to 70 ppm of NO in argon. The plot shows attempts to purge the NO gas from the sensor environment for evaluating reversibility and response times. Upon exposure to NO there is a response with an easily measured change in sheet resistivity. The removal of the sample from the sample cell, exposure to dry nitrogen and then reinsertion into the cell did decrease the sheet resistivity to near its initial value. The re-exposure of the structure to NO again changed the sheet resistivity to near its previous NO exposed value. The resistivity response of functionalized InAs to NO and NO2 is shown in Figure 11 in terms of the normalized sheet resistivity response ((Rsh – R0)/R0). The graphic depicts increasing levels of both gases exposed to the sensor followed by decreasing levels of NO and NO2 (10 to 80 ppm).


Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

Di Franco C, Elia A, Spagnolo V, Scamarcio G, Lugarà PM, Ieva E, Cioffi N, Torsi L, Bruno G, Losurdo M, Garcia MA, Wolter SD, Brown A, Ricco M - Sensors (Basel) (2009)

VDP data from a hemin functionalized InAs sample.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3297121&req=5

f11-sensors-09-03337: VDP data from a hemin functionalized InAs sample.
Mentions: The sheet resistivity response of a hemin functionalized AlGaN/GaN HFET structure is shown in Figure 10. These early, initial results show that the functionalized samples show significant changes in sheet resistivity when exposed to 70 ppm of NO in argon. The plot shows attempts to purge the NO gas from the sensor environment for evaluating reversibility and response times. Upon exposure to NO there is a response with an easily measured change in sheet resistivity. The removal of the sample from the sample cell, exposure to dry nitrogen and then reinsertion into the cell did decrease the sheet resistivity to near its initial value. The re-exposure of the structure to NO again changed the sheet resistivity to near its previous NO exposed value. The resistivity response of functionalized InAs to NO and NO2 is shown in Figure 11 in terms of the normalized sheet resistivity response ((Rsh – R0)/R0). The graphic depicts increasing levels of both gases exposed to the sensor followed by decreasing levels of NO and NO2 (10 to 80 ppm).

Bottom Line: In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices.Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization.Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

View Article: PubMed Central - PubMed

Affiliation: CNR-INFM Regional Laboratory LIT3, via Amendola 173, 70126 Bari, Italy; E-Mails: angela.elia@fisica.uniba.it (A.E.); spagnolo@fisica.uniba.it (V.S.); scamarcio@fisica.uniba.it (G.S.); lugara@fisica.uniba.it (P.M.L.).

ABSTRACT
Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

No MeSH data available.