Limits...
Asthma control cost-utility randomized trial evaluation (ACCURATE): the goals of asthma treatment.

Honkoop PJ, Loymans RJ, Termeer EH, Snoeck-Stroband JB, Bakker MJ, Assendelft WJ, Sterk PJ, Ter Riet G, Schermer TR, Sont JK - BMC Pulm Med (2011)

Bottom Line: We assessed patient preferences and cost-effectiveness of three treatment strategies aimed at achieving different levels of clinical control:1. sufficiently controlled asthma2. strictly controlled asthma3. strictly controlled asthma based on exhaled nitric oxide as an additional disease marker 720 Patients with mild to moderate persistent asthma from general practices with a practice nurse, age 18-50 yr, daily treatment with inhaled corticosteroids (more then 3 months usage of inhaled corticosteroids in the previous year), will be identified via patient registries of general practices in the Leiden, Nijmegen, and Amsterdam areas in The Netherlands.Patient preferences and utilities will be assessed by questionnaire and interview.Differences in societal costs (medication, other (health) care and productivity) will be compared to differences in the number of limited activity days and in quality adjusted life years (Dutch EQ5D, SF6D, e-TTO, VAS).

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept of Medical Decision Making Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands. p.j.honkoop@lumc.nl

ABSTRACT

Background: Despite the availability of effective therapies, asthma remains a source of significant morbidity and use of health care resources. The central research question of the ACCURATE trial is whether maximal doses of (combination) therapy should be used for long periods in an attempt to achieve complete control of all features of asthma. An additional question is whether patients and society value the potential incremental benefit, if any, sufficiently to concur with such a treatment approach. We assessed patient preferences and cost-effectiveness of three treatment strategies aimed at achieving different levels of clinical control:1. sufficiently controlled asthma2. strictly controlled asthma3. strictly controlled asthma based on exhaled nitric oxide as an additional disease marker

Design: 720 Patients with mild to moderate persistent asthma from general practices with a practice nurse, age 18-50 yr, daily treatment with inhaled corticosteroids (more then 3 months usage of inhaled corticosteroids in the previous year), will be identified via patient registries of general practices in the Leiden, Nijmegen, and Amsterdam areas in The Netherlands. The design is a 12-month cluster-randomised parallel trial with 40 general practices in each of the three arms. The patients will visit the general practice at baseline, 3, 6, 9, and 12 months. At each planned and unplanned visit to the general practice treatment will be adjusted with support of an internet-based asthma monitoring system supervised by a central coordinating specialist nurse. Patient preferences and utilities will be assessed by questionnaire and interview. Data on asthma control, treatment step, adherence to treatment, utilities and costs will be obtained every 3 months and at each unplanned visit. Differences in societal costs (medication, other (health) care and productivity) will be compared to differences in the number of limited activity days and in quality adjusted life years (Dutch EQ5D, SF6D, e-TTO, VAS). This is the first study to assess patient preferences and cost-effectiveness of asthma treatment strategies driven by different target levels of asthma control.

Trial registration: Netherlands Trial Register (NTR): NTR1756.

Show MeSH

Related in: MedlinePlus

Power curve of the required sample-size per treatment arm. The curve is represented as a function of willingness-to-pay (WTP) for a range of increases in costs (delta Costs) when a treatment strategy is not only more effective but also more costly. The presented +sample-size is unadjusted for intra-cluster correlation. A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy) and an increase in costs of €250 (delta Costs) when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one-sided, beta = 0.20, one-sided, rho costs-effects = 0). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3295696&req=5

Figure 2: Power curve of the required sample-size per treatment arm. The curve is represented as a function of willingness-to-pay (WTP) for a range of increases in costs (delta Costs) when a treatment strategy is not only more effective but also more costly. The presented +sample-size is unadjusted for intra-cluster correlation. A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy) and an increase in costs of €250 (delta Costs) when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one-sided, beta = 0.20, one-sided, rho costs-effects = 0). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively.

Mentions: A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point [42]. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis [43] between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project; trial registry number NTR826: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy [44]) and an increase in costs of €250 when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one sided [43], beta = 0.20, one sided, rho costs-effects = 0) (Figure 2). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively [45].


Asthma control cost-utility randomized trial evaluation (ACCURATE): the goals of asthma treatment.

Honkoop PJ, Loymans RJ, Termeer EH, Snoeck-Stroband JB, Bakker MJ, Assendelft WJ, Sterk PJ, Ter Riet G, Schermer TR, Sont JK - BMC Pulm Med (2011)

Power curve of the required sample-size per treatment arm. The curve is represented as a function of willingness-to-pay (WTP) for a range of increases in costs (delta Costs) when a treatment strategy is not only more effective but also more costly. The presented +sample-size is unadjusted for intra-cluster correlation. A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy) and an increase in costs of €250 (delta Costs) when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one-sided, beta = 0.20, one-sided, rho costs-effects = 0). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3295696&req=5

Figure 2: Power curve of the required sample-size per treatment arm. The curve is represented as a function of willingness-to-pay (WTP) for a range of increases in costs (delta Costs) when a treatment strategy is not only more effective but also more costly. The presented +sample-size is unadjusted for intra-cluster correlation. A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy) and an increase in costs of €250 (delta Costs) when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one-sided, beta = 0.20, one-sided, rho costs-effects = 0). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively.
Mentions: A minimally important change in patient utility (EQ-5D) has been defined as 0.074 point [42]. With 150 patients per treatment strategy we are able to detect at least a change of 0.06 points by net health benefit analysis [43] between the arms with a SD = 0.175 EQ-5D points (baseline data SMASHING-project; trial registry number NTR826: SD = 0.17) and a SD of €1000 for costs (SD = €816, usual care strategy [44]) and an increase in costs of €250 when a treatment strategy is not only more effective but also more costly, for a willingness-to-pay (WTP) of €30K (alpha = 0.05, one sided [43], beta = 0.20, one sided, rho costs-effects = 0) (Figure 2). With 40 clusters (general practices) per arm and assuming an intra-cluster correlation of 0.01, 0.07 and 0.11 the number of patients per cluster is 4, 5, and 6, and the total number of patients is 480, 600 and 720, respectively [45].

Bottom Line: We assessed patient preferences and cost-effectiveness of three treatment strategies aimed at achieving different levels of clinical control:1. sufficiently controlled asthma2. strictly controlled asthma3. strictly controlled asthma based on exhaled nitric oxide as an additional disease marker 720 Patients with mild to moderate persistent asthma from general practices with a practice nurse, age 18-50 yr, daily treatment with inhaled corticosteroids (more then 3 months usage of inhaled corticosteroids in the previous year), will be identified via patient registries of general practices in the Leiden, Nijmegen, and Amsterdam areas in The Netherlands.Patient preferences and utilities will be assessed by questionnaire and interview.Differences in societal costs (medication, other (health) care and productivity) will be compared to differences in the number of limited activity days and in quality adjusted life years (Dutch EQ5D, SF6D, e-TTO, VAS).

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept of Medical Decision Making Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands. p.j.honkoop@lumc.nl

ABSTRACT

Background: Despite the availability of effective therapies, asthma remains a source of significant morbidity and use of health care resources. The central research question of the ACCURATE trial is whether maximal doses of (combination) therapy should be used for long periods in an attempt to achieve complete control of all features of asthma. An additional question is whether patients and society value the potential incremental benefit, if any, sufficiently to concur with such a treatment approach. We assessed patient preferences and cost-effectiveness of three treatment strategies aimed at achieving different levels of clinical control:1. sufficiently controlled asthma2. strictly controlled asthma3. strictly controlled asthma based on exhaled nitric oxide as an additional disease marker

Design: 720 Patients with mild to moderate persistent asthma from general practices with a practice nurse, age 18-50 yr, daily treatment with inhaled corticosteroids (more then 3 months usage of inhaled corticosteroids in the previous year), will be identified via patient registries of general practices in the Leiden, Nijmegen, and Amsterdam areas in The Netherlands. The design is a 12-month cluster-randomised parallel trial with 40 general practices in each of the three arms. The patients will visit the general practice at baseline, 3, 6, 9, and 12 months. At each planned and unplanned visit to the general practice treatment will be adjusted with support of an internet-based asthma monitoring system supervised by a central coordinating specialist nurse. Patient preferences and utilities will be assessed by questionnaire and interview. Data on asthma control, treatment step, adherence to treatment, utilities and costs will be obtained every 3 months and at each unplanned visit. Differences in societal costs (medication, other (health) care and productivity) will be compared to differences in the number of limited activity days and in quality adjusted life years (Dutch EQ5D, SF6D, e-TTO, VAS). This is the first study to assess patient preferences and cost-effectiveness of asthma treatment strategies driven by different target levels of asthma control.

Trial registration: Netherlands Trial Register (NTR): NTR1756.

Show MeSH
Related in: MedlinePlus