Limits...
High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

Hernandez LL, Grayson BE, Yadav E, Seeley RJ, Horseman ND - PLoS ONE (2012)

Bottom Line: Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals.Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals.These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America. llhernandez@wisc.edu

ABSTRACT
Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

Show MeSH

Related in: MedlinePlus

Pre-pregnancy body weights and feed intake in female Wistar rats consuming a HFD vs. LFD.(A) Pre-pregnancy body weights for 6 weeks prior to mating in female Wistar rats consuming a high-fat diet (N = 6; HFD; 60% kcal from fat) versus a low-fat diet (N = 6; LFD; 10% kcal from fat); (B) Pre-pregnancy body weight gain for 6 weeks prior to mating in female Wistar rats consuming a HFD versus a LFD; (C) Pre-pregnancy cumulative food intake for 6 weeks prior to mating in female Wistar rats consuming HFD versus LFD; (D) Pre-pregnancy average daily kilocalorie intake in female Wistar rats consuming HFD versus LFD. Data are represented as mean ± SEM.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3293832&req=5

pone-0032598-g001: Pre-pregnancy body weights and feed intake in female Wistar rats consuming a HFD vs. LFD.(A) Pre-pregnancy body weights for 6 weeks prior to mating in female Wistar rats consuming a high-fat diet (N = 6; HFD; 60% kcal from fat) versus a low-fat diet (N = 6; LFD; 10% kcal from fat); (B) Pre-pregnancy body weight gain for 6 weeks prior to mating in female Wistar rats consuming a HFD versus a LFD; (C) Pre-pregnancy cumulative food intake for 6 weeks prior to mating in female Wistar rats consuming HFD versus LFD; (D) Pre-pregnancy average daily kilocalorie intake in female Wistar rats consuming HFD versus LFD. Data are represented as mean ± SEM.

Mentions: HFD animals had significantly higher weekly body weights and body weight gain for the final 3 weeks prior to mating (Figures 1a, b). Cumulative caloric intake was significantly higher in HFD animals during the feeding period pre-mating (Figure 1c). Daily food intake was higher for the first two weeks of feeding in the HFD animals, but did not differ from the LFD animals during the final 4 weeks prior to mating (Figure 1d). Feed intake and body weights were not measured in pregnant and post-partum animals.


High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

Hernandez LL, Grayson BE, Yadav E, Seeley RJ, Horseman ND - PLoS ONE (2012)

Pre-pregnancy body weights and feed intake in female Wistar rats consuming a HFD vs. LFD.(A) Pre-pregnancy body weights for 6 weeks prior to mating in female Wistar rats consuming a high-fat diet (N = 6; HFD; 60% kcal from fat) versus a low-fat diet (N = 6; LFD; 10% kcal from fat); (B) Pre-pregnancy body weight gain for 6 weeks prior to mating in female Wistar rats consuming a HFD versus a LFD; (C) Pre-pregnancy cumulative food intake for 6 weeks prior to mating in female Wistar rats consuming HFD versus LFD; (D) Pre-pregnancy average daily kilocalorie intake in female Wistar rats consuming HFD versus LFD. Data are represented as mean ± SEM.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3293832&req=5

pone-0032598-g001: Pre-pregnancy body weights and feed intake in female Wistar rats consuming a HFD vs. LFD.(A) Pre-pregnancy body weights for 6 weeks prior to mating in female Wistar rats consuming a high-fat diet (N = 6; HFD; 60% kcal from fat) versus a low-fat diet (N = 6; LFD; 10% kcal from fat); (B) Pre-pregnancy body weight gain for 6 weeks prior to mating in female Wistar rats consuming a HFD versus a LFD; (C) Pre-pregnancy cumulative food intake for 6 weeks prior to mating in female Wistar rats consuming HFD versus LFD; (D) Pre-pregnancy average daily kilocalorie intake in female Wistar rats consuming HFD versus LFD. Data are represented as mean ± SEM.
Mentions: HFD animals had significantly higher weekly body weights and body weight gain for the final 3 weeks prior to mating (Figures 1a, b). Cumulative caloric intake was significantly higher in HFD animals during the feeding period pre-mating (Figure 1c). Daily food intake was higher for the first two weeks of feeding in the HFD animals, but did not differ from the LFD animals during the final 4 weeks prior to mating (Figure 1d). Feed intake and body weights were not measured in pregnant and post-partum animals.

Bottom Line: Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals.Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals.These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular and Cellular Physiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America. llhernandez@wisc.edu

ABSTRACT
Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD) has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat) diet versus a low-fat diet (LFD; 10% kcal from fat) to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1) and keratin 5 (K5), a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin (5-HT) biosynthesis, and the 5-HT(7) receptor (HTR7), which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α). These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

Show MeSH
Related in: MedlinePlus