Limits...
Comparison of influenza and SIV specific CD8 T cell responses in macaques.

Jegaskanda S, Reece JC, De Rose R, Stambas J, Sullivan L, Brooks AG, Kent SJ, Sexton A - PLoS ONE (2012)

Bottom Line: We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele.In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells.This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.

ABSTRACT
Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8(+) T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8(+) T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8(+) T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8(+) T-cell response, profile may assist in controlling HIV disease.

Show MeSH

Related in: MedlinePlus

T-cell receptor down-regulation in response to antigenic stimulation.Tetramer-ICS assay performed using blood from an animal inoculated with influenza viruses (animal #26359) by stimulating blood cells with either DMSO (unstimulated) or decreasing concentrations of RA9 peptide (1000 ng/ml, 100 ng/ml, 10 ng/ml and 1 ng/ml). (A) Loss of tetramer+ cells following in vitro stimulation with high RA9 peptide concentrations. Cells were gated on CD3+CD8+ followed by gating on influenza RA9 tetramer positive cells. (B) Higher cytokine expression in influenza RA9-specific cells following stimulation with >10 ng/ml of RA9. The IFN-γ and TNF-α production from gated tetramer+ RA9-specific cells from panel (A) were compared between the decreasing concentrations of peptide. (C) Samples were analysed via two alternative gating strategies; gating on CD3+CD8+ cells, followed by gating on the total IFN-γ. Alternatively we gated on CD3 negative and positive cells (CD3+/−) and then gated on CD8+ cells, and measured the total IFN-γ production from these cells. Cells from this strategy were plotted as IFN-γ versus RA9-tetramer positive cells.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3293803&req=5

pone-0032431-g005: T-cell receptor down-regulation in response to antigenic stimulation.Tetramer-ICS assay performed using blood from an animal inoculated with influenza viruses (animal #26359) by stimulating blood cells with either DMSO (unstimulated) or decreasing concentrations of RA9 peptide (1000 ng/ml, 100 ng/ml, 10 ng/ml and 1 ng/ml). (A) Loss of tetramer+ cells following in vitro stimulation with high RA9 peptide concentrations. Cells were gated on CD3+CD8+ followed by gating on influenza RA9 tetramer positive cells. (B) Higher cytokine expression in influenza RA9-specific cells following stimulation with >10 ng/ml of RA9. The IFN-γ and TNF-α production from gated tetramer+ RA9-specific cells from panel (A) were compared between the decreasing concentrations of peptide. (C) Samples were analysed via two alternative gating strategies; gating on CD3+CD8+ cells, followed by gating on the total IFN-γ. Alternatively we gated on CD3 negative and positive cells (CD3+/−) and then gated on CD8+ cells, and measured the total IFN-γ production from these cells. Cells from this strategy were plotted as IFN-γ versus RA9-tetramer positive cells.

Mentions: To optimize the use of the Mane-A*10-RA9 tetramer in an ICS assay we investigated the effect of stimulating the cells with 10-fold decreasing concentrations of RA9 peptide on the Mane-A*10-RA9 tetramer staining and RA9-specific CD8 T cell cytokine production (Figure 5a). A clear reduction in Mane-A*10-RA9 tetramer staining is observed as the concentration of the RA9 peptide antigen was increased; from a frequency of 0.71% in the unstimulated sample to 0.12% in the sample stimulated with 1000 ng/ml of RA9 peptide (Figure 5a). However, the frequency of Mane-A*10-RA9 tetramer positive cells producing IFN-γ and TNF-α remains similar (approximately 50%) for all RA9 peptide concentrations except 1 ng/ml where the frequency drops to 23.65% (Figure 5b).


Comparison of influenza and SIV specific CD8 T cell responses in macaques.

Jegaskanda S, Reece JC, De Rose R, Stambas J, Sullivan L, Brooks AG, Kent SJ, Sexton A - PLoS ONE (2012)

T-cell receptor down-regulation in response to antigenic stimulation.Tetramer-ICS assay performed using blood from an animal inoculated with influenza viruses (animal #26359) by stimulating blood cells with either DMSO (unstimulated) or decreasing concentrations of RA9 peptide (1000 ng/ml, 100 ng/ml, 10 ng/ml and 1 ng/ml). (A) Loss of tetramer+ cells following in vitro stimulation with high RA9 peptide concentrations. Cells were gated on CD3+CD8+ followed by gating on influenza RA9 tetramer positive cells. (B) Higher cytokine expression in influenza RA9-specific cells following stimulation with >10 ng/ml of RA9. The IFN-γ and TNF-α production from gated tetramer+ RA9-specific cells from panel (A) were compared between the decreasing concentrations of peptide. (C) Samples were analysed via two alternative gating strategies; gating on CD3+CD8+ cells, followed by gating on the total IFN-γ. Alternatively we gated on CD3 negative and positive cells (CD3+/−) and then gated on CD8+ cells, and measured the total IFN-γ production from these cells. Cells from this strategy were plotted as IFN-γ versus RA9-tetramer positive cells.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3293803&req=5

pone-0032431-g005: T-cell receptor down-regulation in response to antigenic stimulation.Tetramer-ICS assay performed using blood from an animal inoculated with influenza viruses (animal #26359) by stimulating blood cells with either DMSO (unstimulated) or decreasing concentrations of RA9 peptide (1000 ng/ml, 100 ng/ml, 10 ng/ml and 1 ng/ml). (A) Loss of tetramer+ cells following in vitro stimulation with high RA9 peptide concentrations. Cells were gated on CD3+CD8+ followed by gating on influenza RA9 tetramer positive cells. (B) Higher cytokine expression in influenza RA9-specific cells following stimulation with >10 ng/ml of RA9. The IFN-γ and TNF-α production from gated tetramer+ RA9-specific cells from panel (A) were compared between the decreasing concentrations of peptide. (C) Samples were analysed via two alternative gating strategies; gating on CD3+CD8+ cells, followed by gating on the total IFN-γ. Alternatively we gated on CD3 negative and positive cells (CD3+/−) and then gated on CD8+ cells, and measured the total IFN-γ production from these cells. Cells from this strategy were plotted as IFN-γ versus RA9-tetramer positive cells.
Mentions: To optimize the use of the Mane-A*10-RA9 tetramer in an ICS assay we investigated the effect of stimulating the cells with 10-fold decreasing concentrations of RA9 peptide on the Mane-A*10-RA9 tetramer staining and RA9-specific CD8 T cell cytokine production (Figure 5a). A clear reduction in Mane-A*10-RA9 tetramer staining is observed as the concentration of the RA9 peptide antigen was increased; from a frequency of 0.71% in the unstimulated sample to 0.12% in the sample stimulated with 1000 ng/ml of RA9 peptide (Figure 5a). However, the frequency of Mane-A*10-RA9 tetramer positive cells producing IFN-γ and TNF-α remains similar (approximately 50%) for all RA9 peptide concentrations except 1 ng/ml where the frequency drops to 23.65% (Figure 5b).

Bottom Line: We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele.In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells.This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28.

View Article: PubMed Central - PubMed

Affiliation: Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia.

ABSTRACT
Macaques are a potentially useful non-human primate model to compare memory T-cell immunity to acute virus pathogens such as influenza virus and effector T-cell responses to chronic viral pathogens such as SIV. However, immunological reagents to study influenza CD8(+) T-cell responses in the macaque model are limited. We recently developed an influenza-SIV vaccination model of pigtail macaques (Macaca nemestrina) and used this to study both influenza-specific and SIV-specific CD8(+) T-cells in 39 pigtail macaques expressing the common Mane-A*10(+) (Mane-A01*084) MHC-I allele. To perform comparative studies between influenza and SIV responses a common influenza nucleoprotein-specific CD8(+) T-cell response was mapped to a minimal epitope (termed RA9), MHC-restricted to Mane-A*10 and an MHC tetramer developed to study this response. Influenza-specific memory CD8(+) T-cell response maintained a highly functional profile in terms of multitude of effector molecule expression (CD107a, IFN-γ, TNF-α, MIP-1β and IL-2) and showed high avidity even in the setting of SIV infection. In contrast, within weeks following active SIV infection, SIV-specific CD8(+) effector T-cells expressed fewer cytokines/degranulation markers and had a lower avidity compared to influenza specific CD8(+) T-cells. Further, the influenza specific memory CD8 T-cell response retained stable expression of the exhaustion marker programmed death-marker-1 (PD-1) and co-stimulatory molecule CD28 following infection with SIV. This contrasted with the effector SIV-specific CD8(+) T-cells following SIV infection which expressed significantly higher amounts of PD-1 and lower amounts of CD28. Our results suggest that strategies to maintain a more functional CD8(+) T-cell response, profile may assist in controlling HIV disease.

Show MeSH
Related in: MedlinePlus