Limits...
Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.

Krogh-Madsen T, Abbott GW, Christini DJ - PLoS Comput. Biol. (2012)

Bottom Line: This is due to electrical, structural, and contractile remodeling processes.The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling.However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling.

View Article: PubMed Central - PubMed

Affiliation: Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America.

ABSTRACT
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength--electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely.

Show MeSH

Related in: MedlinePlus

Typical long-term patterns of reentry in computer simulations of atrial tissue with different combinations of remodeling.Left and right columns in each of A, B and C, show two different views obtained at the same time points. Snapshots are 30 ms apart. Reentry anchored to the left pulmonary veins (LPV) during full electrical remodeling (A). Reentry around the tricuspid annulus (TA) and the inferior vena cava (IVC) during full structural remodeling (B). Un-anchored reentry in the left atrial free wall and anchored reentry around the superior vena cava (SVC) with full electrical plus structural remodeling (C).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3285569&req=5

pcbi-1002390-g005: Typical long-term patterns of reentry in computer simulations of atrial tissue with different combinations of remodeling.Left and right columns in each of A, B and C, show two different views obtained at the same time points. Snapshots are 30 ms apart. Reentry anchored to the left pulmonary veins (LPV) during full electrical remodeling (A). Reentry around the tricuspid annulus (TA) and the inferior vena cava (IVC) during full structural remodeling (B). Un-anchored reentry in the left atrial free wall and anchored reentry around the superior vena cava (SVC) with full electrical plus structural remodeling (C).

Mentions: More specifically, for electrical remodeling, 4 of 6 simulations resulted in reentry around the pulmonary veins (Table 1). Fig. 5A shows an example of such dynamics (see also Video S3 in the Supporting Information). A wave is anchored to the left pulmonary veins during the entire rotation (Fig. 5A, left). Another wave front is circulating the right pulmonary veins, but does not remain completely anchored for the entire rotation (Fig. 5A, right). Excitation spreads from the left atrium to the right.


Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.

Krogh-Madsen T, Abbott GW, Christini DJ - PLoS Comput. Biol. (2012)

Typical long-term patterns of reentry in computer simulations of atrial tissue with different combinations of remodeling.Left and right columns in each of A, B and C, show two different views obtained at the same time points. Snapshots are 30 ms apart. Reentry anchored to the left pulmonary veins (LPV) during full electrical remodeling (A). Reentry around the tricuspid annulus (TA) and the inferior vena cava (IVC) during full structural remodeling (B). Un-anchored reentry in the left atrial free wall and anchored reentry around the superior vena cava (SVC) with full electrical plus structural remodeling (C).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3285569&req=5

pcbi-1002390-g005: Typical long-term patterns of reentry in computer simulations of atrial tissue with different combinations of remodeling.Left and right columns in each of A, B and C, show two different views obtained at the same time points. Snapshots are 30 ms apart. Reentry anchored to the left pulmonary veins (LPV) during full electrical remodeling (A). Reentry around the tricuspid annulus (TA) and the inferior vena cava (IVC) during full structural remodeling (B). Un-anchored reentry in the left atrial free wall and anchored reentry around the superior vena cava (SVC) with full electrical plus structural remodeling (C).
Mentions: More specifically, for electrical remodeling, 4 of 6 simulations resulted in reentry around the pulmonary veins (Table 1). Fig. 5A shows an example of such dynamics (see also Video S3 in the Supporting Information). A wave is anchored to the left pulmonary veins during the entire rotation (Fig. 5A, left). Another wave front is circulating the right pulmonary veins, but does not remain completely anchored for the entire rotation (Fig. 5A, right). Excitation spreads from the left atrium to the right.

Bottom Line: This is due to electrical, structural, and contractile remodeling processes.The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling.However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling.

View Article: PubMed Central - PubMed

Affiliation: Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America.

ABSTRACT
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength--electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely.

Show MeSH
Related in: MedlinePlus