Limits...
Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.

Krogh-Madsen T, Abbott GW, Christini DJ - PLoS Comput. Biol. (2012)

Bottom Line: This is due to electrical, structural, and contractile remodeling processes.The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling.However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling.

View Article: PubMed Central - PubMed

Affiliation: Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America.

ABSTRACT
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength--electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely.

Show MeSH

Related in: MedlinePlus

Reentrant activity in computer simulations of normal tissue (A) and tissue with full electrical plus structural remodeling (B).Different views are obtained at the same point in time for each simulation and show left atrial free wall (upper left), left and right atria in a posterior view (upper right), tricuspid annulus and mitral annulus (lower left), and right atrial free wall (lower right). Abbreviations: left atrium (LA), right atrium (RA), left pulmonary veins (LPV), right pulmonary veins (RPV), superior vena cava (SVC), inferior vena cava (IVC), tricuspid annulus (TA), mitral annulus (MA). Reentry was initiated in the left atrial free wall in both cases. Snapshots were taken after 510 ms (A) and 9 s (B).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3285569&req=5

pcbi-1002390-g001: Reentrant activity in computer simulations of normal tissue (A) and tissue with full electrical plus structural remodeling (B).Different views are obtained at the same point in time for each simulation and show left atrial free wall (upper left), left and right atria in a posterior view (upper right), tricuspid annulus and mitral annulus (lower left), and right atrial free wall (lower right). Abbreviations: left atrium (LA), right atrium (RA), left pulmonary veins (LPV), right pulmonary veins (RPV), superior vena cava (SVC), inferior vena cava (IVC), tricuspid annulus (TA), mitral annulus (MA). Reentry was initiated in the left atrial free wall in both cases. Snapshots were taken after 510 ms (A) and 9 s (B).

Mentions: Fig. 1A shows an example of non-sustained reentrant activity in normal tissue. The wavelength in this case is sufficiently long that the reentrant wave eventually runs into refractory tissue and dies out. In contrast, when simulating full electrical plus structural remodeling, reentry was sustained for 60 s in 18 of 21 simulations. With such electrical plus structural remodeling the wavelength is much shorter than in normal tissue (Fig. 1B), and the reentrant wave in the left atrial free wall does not self-terminate. Videos showing these dynamics with and without remodeling are available as Supporting Information (Videos S1 and S2).


Effects of electrical and structural remodeling on atrial fibrillation maintenance: a simulation study.

Krogh-Madsen T, Abbott GW, Christini DJ - PLoS Comput. Biol. (2012)

Reentrant activity in computer simulations of normal tissue (A) and tissue with full electrical plus structural remodeling (B).Different views are obtained at the same point in time for each simulation and show left atrial free wall (upper left), left and right atria in a posterior view (upper right), tricuspid annulus and mitral annulus (lower left), and right atrial free wall (lower right). Abbreviations: left atrium (LA), right atrium (RA), left pulmonary veins (LPV), right pulmonary veins (RPV), superior vena cava (SVC), inferior vena cava (IVC), tricuspid annulus (TA), mitral annulus (MA). Reentry was initiated in the left atrial free wall in both cases. Snapshots were taken after 510 ms (A) and 9 s (B).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3285569&req=5

pcbi-1002390-g001: Reentrant activity in computer simulations of normal tissue (A) and tissue with full electrical plus structural remodeling (B).Different views are obtained at the same point in time for each simulation and show left atrial free wall (upper left), left and right atria in a posterior view (upper right), tricuspid annulus and mitral annulus (lower left), and right atrial free wall (lower right). Abbreviations: left atrium (LA), right atrium (RA), left pulmonary veins (LPV), right pulmonary veins (RPV), superior vena cava (SVC), inferior vena cava (IVC), tricuspid annulus (TA), mitral annulus (MA). Reentry was initiated in the left atrial free wall in both cases. Snapshots were taken after 510 ms (A) and 9 s (B).
Mentions: Fig. 1A shows an example of non-sustained reentrant activity in normal tissue. The wavelength in this case is sufficiently long that the reentrant wave eventually runs into refractory tissue and dies out. In contrast, when simulating full electrical plus structural remodeling, reentry was sustained for 60 s in 18 of 21 simulations. With such electrical plus structural remodeling the wavelength is much shorter than in normal tissue (Fig. 1B), and the reentrant wave in the left atrial free wall does not self-terminate. Videos showing these dynamics with and without remodeling are available as Supporting Information (Videos S1 and S2).

Bottom Line: This is due to electrical, structural, and contractile remodeling processes.The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling.However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling.

View Article: PubMed Central - PubMed

Affiliation: Greenberg Division of Cardiology, Department of Medicine, Weill Cornell Medical College, New York, New York, United States of America.

ABSTRACT
Atrial fibrillation, a common cardiac arrhythmia, often progresses unfavourably: in patients with long-term atrial fibrillation, fibrillatory episodes are typically of increased duration and frequency of occurrence relative to healthy controls. This is due to electrical, structural, and contractile remodeling processes. We investigated mechanisms of how electrical and structural remodeling contribute to perpetuation of simulated atrial fibrillation, using a mathematical model of the human atrial action potential incorporated into an anatomically realistic three-dimensional structural model of the human atria. Electrical and structural remodeling both shortened the atrial wavelength--electrical remodeling primarily through a decrease in action potential duration, while structural remodeling primarily slowed conduction. The decrease in wavelength correlates with an increase in the average duration of atrial fibrillation/flutter episodes. The dependence of reentry duration on wavelength was the same for electrical vs. structural remodeling. However, the dynamics during atrial reentry varied between electrical, structural, and combined electrical and structural remodeling in several ways, including: (i) with structural remodeling there were more occurrences of fragmented wavefronts and hence more filaments than during electrical remodeling; (ii) dominant waves anchored around different anatomical obstacles in electrical vs. structural remodeling; (iii) dominant waves were often not anchored in combined electrical and structural remodeling. We conclude that, in simulated atrial fibrillation, the wavelength dependence of reentry duration is similar for electrical and structural remodeling, despite major differences in overall dynamics, including maximal number of filaments, wave fragmentation, restitution properties, and whether dominant waves are anchored to anatomical obstacles or spiralling freely.

Show MeSH
Related in: MedlinePlus