Limits...
Emotional cues during simultaneous face and voice processing: electrophysiological insights.

Liu T, Pinheiro A, Zhao Z, Nestor PG, McCarley RW, Niznikiewicz MA - PLoS ONE (2012)

Bottom Line: Results indicated a significant audiovisual stimulus effect on the amplitudes and latencies of components in frontal-central (P200, P300, and N250) but not the parietal occipital region (P100, N170 and P270).No differentiation was observed between angry and happy conditions.The results suggest that the general effect of emotion on audiovisual processing can emerge as early as 200 msec (P200 peak latency) post stimulus onset, in spite of implicit affective processing task demands, and that such effect is mainly distributed in the frontal-central region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Second Military Medical University, Shanghai, China.

ABSTRACT
Both facial expression and tone of voice represent key signals of emotional communication but their brain processing correlates remain unclear. Accordingly, we constructed a novel implicit emotion recognition task consisting of simultaneously presented human faces and voices with neutral, happy, and angry valence, within the context of recognizing monkey faces and voices task. To investigate the temporal unfolding of the processing of affective information from human face-voice pairings, we recorded event-related potentials (ERPs) to these audiovisual test stimuli in 18 normal healthy subjects; N100, P200, N250, P300 components were observed at electrodes in the frontal-central region, while P100, N170, P270 were observed at electrodes in the parietal-occipital region. Results indicated a significant audiovisual stimulus effect on the amplitudes and latencies of components in frontal-central (P200, P300, and N250) but not the parietal occipital region (P100, N170 and P270). Specifically, P200 and P300 amplitudes were more positive for emotional relative to neutral audiovisual stimuli, irrespective of valence, whereas N250 amplitude was more negative for neutral relative to emotional stimuli. No differentiation was observed between angry and happy conditions. The results suggest that the general effect of emotion on audiovisual processing can emerge as early as 200 msec (P200 peak latency) post stimulus onset, in spite of implicit affective processing task demands, and that such effect is mainly distributed in the frontal-central region.

Show MeSH

Related in: MedlinePlus

ERP waveforms to each condition at parieto-occipital electrodes.The parieto-occipital components P1, N170 and P270 are shown at O1, Oz, O2, PO9 and PO10 for the neutral (Black), happy (Red) and angry (Green) congruent audiovisual conditions (face and voice).
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3285164&req=5

pone-0031001-g001: ERP waveforms to each condition at parieto-occipital electrodes.The parieto-occipital components P1, N170 and P270 are shown at O1, Oz, O2, PO9 and PO10 for the neutral (Black), happy (Red) and angry (Green) congruent audiovisual conditions (face and voice).

Mentions: Figure 1 shows grand average waveforms for neutral and emotional conditions, at parieto-occipital electrodes. Figure 2 illustrates the topographic distribution of parieto-occipital components for each condition.


Emotional cues during simultaneous face and voice processing: electrophysiological insights.

Liu T, Pinheiro A, Zhao Z, Nestor PG, McCarley RW, Niznikiewicz MA - PLoS ONE (2012)

ERP waveforms to each condition at parieto-occipital electrodes.The parieto-occipital components P1, N170 and P270 are shown at O1, Oz, O2, PO9 and PO10 for the neutral (Black), happy (Red) and angry (Green) congruent audiovisual conditions (face and voice).
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3285164&req=5

pone-0031001-g001: ERP waveforms to each condition at parieto-occipital electrodes.The parieto-occipital components P1, N170 and P270 are shown at O1, Oz, O2, PO9 and PO10 for the neutral (Black), happy (Red) and angry (Green) congruent audiovisual conditions (face and voice).
Mentions: Figure 1 shows grand average waveforms for neutral and emotional conditions, at parieto-occipital electrodes. Figure 2 illustrates the topographic distribution of parieto-occipital components for each condition.

Bottom Line: Results indicated a significant audiovisual stimulus effect on the amplitudes and latencies of components in frontal-central (P200, P300, and N250) but not the parietal occipital region (P100, N170 and P270).No differentiation was observed between angry and happy conditions.The results suggest that the general effect of emotion on audiovisual processing can emerge as early as 200 msec (P200 peak latency) post stimulus onset, in spite of implicit affective processing task demands, and that such effect is mainly distributed in the frontal-central region.

View Article: PubMed Central - PubMed

Affiliation: Department of Psychology, Second Military Medical University, Shanghai, China.

ABSTRACT
Both facial expression and tone of voice represent key signals of emotional communication but their brain processing correlates remain unclear. Accordingly, we constructed a novel implicit emotion recognition task consisting of simultaneously presented human faces and voices with neutral, happy, and angry valence, within the context of recognizing monkey faces and voices task. To investigate the temporal unfolding of the processing of affective information from human face-voice pairings, we recorded event-related potentials (ERPs) to these audiovisual test stimuli in 18 normal healthy subjects; N100, P200, N250, P300 components were observed at electrodes in the frontal-central region, while P100, N170, P270 were observed at electrodes in the parietal-occipital region. Results indicated a significant audiovisual stimulus effect on the amplitudes and latencies of components in frontal-central (P200, P300, and N250) but not the parietal occipital region (P100, N170 and P270). Specifically, P200 and P300 amplitudes were more positive for emotional relative to neutral audiovisual stimuli, irrespective of valence, whereas N250 amplitude was more negative for neutral relative to emotional stimuli. No differentiation was observed between angry and happy conditions. The results suggest that the general effect of emotion on audiovisual processing can emerge as early as 200 msec (P200 peak latency) post stimulus onset, in spite of implicit affective processing task demands, and that such effect is mainly distributed in the frontal-central region.

Show MeSH
Related in: MedlinePlus