Limits...
QTL and candidate gene mapping for polyphenolic composition in apple fruit.

Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA - BMC Plant Biol. (2012)

Bottom Line: This co-location was confirmed by genetic mapping of markers derived from the gene sequences.Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

View Article: PubMed Central - HTML - PubMed

Affiliation: The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North 4442, New Zealand. David.Chagne@plantandfood.co.nz

ABSTRACT

Background: The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin.

Results: Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.

Conclusion: We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

Show MeSH

Related in: MedlinePlus

Stable quantitative trait loci (QTLs) for polyphenolic compounds in apple fruit skin and cortex detected using the 'Royal Gala' × 'Braeburn' genetic map. Seven clusters detected across 6 linkage groups (LG) were stable using the 2008 and 2010 phenotypic data. QTLs detected in a single year only on LGs 1, 6, 7, 9, 13 and 17 are not presented. The QTL intervals are shown as maximum LOD-1 and maximum LOD-2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3285079&req=5

Figure 2: Stable quantitative trait loci (QTLs) for polyphenolic compounds in apple fruit skin and cortex detected using the 'Royal Gala' × 'Braeburn' genetic map. Seven clusters detected across 6 linkage groups (LG) were stable using the 2008 and 2010 phenotypic data. QTLs detected in a single year only on LGs 1, 6, 7, 9, 13 and 17 are not presented. The QTL intervals are shown as maximum LOD-1 and maximum LOD-2.

Mentions: Seventy-nine QTLs for 17 compounds were detected over 9 LGs using multiple QTL (MQM) analysis (Table 2a), with explained genotypic variation ranging from 5% to 71.8%. Four QTLs for Procyanidin B2 and two unknown procyanidin oligomers were detected using the Kruskal-Wallis test (Table 2b). Forty-one and 38 QTLs were detected on the 'Royal Gala' and 'Braeburn' maps, respectively. The largest cluster of QTLs was located at the top of LG 16, where 42 QTLs were detected for flavanol compounds within the same region on both parental maps. Seven clusters were found where QTLs were stable between years and for classes of compounds (Figure 2), including: quercetin 3-O-rutinoside in fruit skin for 'Royal Gala' on LG 17; cyanidin 3-O-galactoside and cyanidin 3-O-arabinoside in fruit skin for both parents on LG 9; all eight measured flavanols in fruit skin and cortex for both parents on LG 16; chlorogenic acid in fruit skin and cortex for 'Royal Gala' on LG 17; p-coumaroyl quinic acid in fruit cortex for 'Braeburn' on LG 15; p-coumaroyl quinic acid in fruit skin and cortex for 'Royal Gala' on LG 1; p-coumaroyl quinic acid in fruit skin and cortex for both parents on LG 14. Other QTLs were detected on LGs 1, 6, 7, 9, 13 and 17 for a range of compounds in individual years, but were not found across years.


QTL and candidate gene mapping for polyphenolic composition in apple fruit.

Chagné D, Krieger C, Rassam M, Sullivan M, Fraser J, André C, Pindo M, Troggio M, Gardiner SE, Henry RA, Allan AC, McGhie TK, Laing WA - BMC Plant Biol. (2012)

Stable quantitative trait loci (QTLs) for polyphenolic compounds in apple fruit skin and cortex detected using the 'Royal Gala' × 'Braeburn' genetic map. Seven clusters detected across 6 linkage groups (LG) were stable using the 2008 and 2010 phenotypic data. QTLs detected in a single year only on LGs 1, 6, 7, 9, 13 and 17 are not presented. The QTL intervals are shown as maximum LOD-1 and maximum LOD-2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3285079&req=5

Figure 2: Stable quantitative trait loci (QTLs) for polyphenolic compounds in apple fruit skin and cortex detected using the 'Royal Gala' × 'Braeburn' genetic map. Seven clusters detected across 6 linkage groups (LG) were stable using the 2008 and 2010 phenotypic data. QTLs detected in a single year only on LGs 1, 6, 7, 9, 13 and 17 are not presented. The QTL intervals are shown as maximum LOD-1 and maximum LOD-2.
Mentions: Seventy-nine QTLs for 17 compounds were detected over 9 LGs using multiple QTL (MQM) analysis (Table 2a), with explained genotypic variation ranging from 5% to 71.8%. Four QTLs for Procyanidin B2 and two unknown procyanidin oligomers were detected using the Kruskal-Wallis test (Table 2b). Forty-one and 38 QTLs were detected on the 'Royal Gala' and 'Braeburn' maps, respectively. The largest cluster of QTLs was located at the top of LG 16, where 42 QTLs were detected for flavanol compounds within the same region on both parental maps. Seven clusters were found where QTLs were stable between years and for classes of compounds (Figure 2), including: quercetin 3-O-rutinoside in fruit skin for 'Royal Gala' on LG 17; cyanidin 3-O-galactoside and cyanidin 3-O-arabinoside in fruit skin for both parents on LG 9; all eight measured flavanols in fruit skin and cortex for both parents on LG 16; chlorogenic acid in fruit skin and cortex for 'Royal Gala' on LG 17; p-coumaroyl quinic acid in fruit cortex for 'Braeburn' on LG 15; p-coumaroyl quinic acid in fruit skin and cortex for 'Royal Gala' on LG 1; p-coumaroyl quinic acid in fruit skin and cortex for both parents on LG 14. Other QTLs were detected on LGs 1, 6, 7, 9, 13 and 17 for a range of compounds in individual years, but were not found across years.

Bottom Line: This co-location was confirmed by genetic mapping of markers derived from the gene sequences.Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

View Article: PubMed Central - HTML - PubMed

Affiliation: The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North 4442, New Zealand. David.Chagne@plantandfood.co.nz

ABSTRACT

Background: The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin.

Results: Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.

Conclusion: We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

Show MeSH
Related in: MedlinePlus