Limits...
Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats.

Zhai HL, Wu H, Xu H, Weng P, Xia FZ, Chen Y, Lu YL - Reprod. Biol. Endocrinol. (2012)

Bottom Line: Ra of glucose and GNG increased significantly in the andronate+HFD rats.However, the Ra of glycerol was similar in the three groups.Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels.

View Article: PubMed Central - HTML - PubMed

Affiliation: Endocrinology and Metabolism Research Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.

ABSTRACT

Background: There is a high prevalence of diabetes mellitus (DM) and dyslipidemia in women with polycystic ovary syndrome (PCOS). The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet.

Methods: Female Sprague-Dawley rats were divided into 3 groups: the control group(C), n = 10; the andronate-treated group (Andronate), n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks); and the andronate-treated and high-fat diet group (Andronate+HFD), n = 10. The rate of glucose appearance (Ra of glucose), gluconeogenesis (GNG), and the rate of glycerol appearance (Ra of glycerol) were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured.

Results: Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P < 0.05) but similar blood glucose concentrations. Of the two andronate-treated groups, the andronate+HFD group had the most serious insulin resistance (IR). Estrus cycles were completely acyclic, with polycystic ovaries and elevated serum lipid profiles in the andronate+HFD group (P < 0.05). Ra of glucose and GNG increased significantly in the andronate+HFD rats. However, the Ra of glycerol was similar in the three groups.

Conclusions: Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

Show MeSH

Related in: MedlinePlus

Histology of ovaries. Ovaries were stained by HE staining:A:control group(HE staining, ×40); B:andronate group(×40); C:andronate + HFD group(×40); D:control group(×200); E:andronate group(×200); F:andronate + HFD group(×200).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3278365&req=5

Figure 6: Histology of ovaries. Ovaries were stained by HE staining:A:control group(HE staining, ×40); B:andronate group(×40); C:andronate + HFD group(×40); D:control group(×200); E:andronate group(×200); F:andronate + HFD group(×200).

Mentions: Light microscope revealed normal ovarian structures in the control group (Figure 6A, D), with follicles and corpora lutea in various stages and no ovary cysts were observed. The ovaries of the andronate-treated group were much smaller than those of the control group (Figure 6B), with many cystic follicles with apoptotic granulosa cells (Figure 6E). The andronate + HFD group had larger ovaries than the control group, with a fatty infiltration surrounded the ovaries (Figure 6C). In addition, cystic follicles with macrophages and fluid were also observed (Figure 6F). In general, both experimental groups had fewer corpus lutea and preovulatory follicles and had more preantral and antral follicles than the controls.


Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats.

Zhai HL, Wu H, Xu H, Weng P, Xia FZ, Chen Y, Lu YL - Reprod. Biol. Endocrinol. (2012)

Histology of ovaries. Ovaries were stained by HE staining:A:control group(HE staining, ×40); B:andronate group(×40); C:andronate + HFD group(×40); D:control group(×200); E:andronate group(×200); F:andronate + HFD group(×200).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3278365&req=5

Figure 6: Histology of ovaries. Ovaries were stained by HE staining:A:control group(HE staining, ×40); B:andronate group(×40); C:andronate + HFD group(×40); D:control group(×200); E:andronate group(×200); F:andronate + HFD group(×200).
Mentions: Light microscope revealed normal ovarian structures in the control group (Figure 6A, D), with follicles and corpora lutea in various stages and no ovary cysts were observed. The ovaries of the andronate-treated group were much smaller than those of the control group (Figure 6B), with many cystic follicles with apoptotic granulosa cells (Figure 6E). The andronate + HFD group had larger ovaries than the control group, with a fatty infiltration surrounded the ovaries (Figure 6C). In addition, cystic follicles with macrophages and fluid were also observed (Figure 6F). In general, both experimental groups had fewer corpus lutea and preovulatory follicles and had more preantral and antral follicles than the controls.

Bottom Line: Ra of glucose and GNG increased significantly in the andronate+HFD rats.However, the Ra of glycerol was similar in the three groups.Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels.

View Article: PubMed Central - HTML - PubMed

Affiliation: Endocrinology and Metabolism Research Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200011, China.

ABSTRACT

Background: There is a high prevalence of diabetes mellitus (DM) and dyslipidemia in women with polycystic ovary syndrome (PCOS). The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet.

Methods: Female Sprague-Dawley rats were divided into 3 groups: the control group(C), n = 10; the andronate-treated group (Andronate), n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks); and the andronate-treated and high-fat diet group (Andronate+HFD), n = 10. The rate of glucose appearance (Ra of glucose), gluconeogenesis (GNG), and the rate of glycerol appearance (Ra of glycerol) were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured.

Results: Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P < 0.05) but similar blood glucose concentrations. Of the two andronate-treated groups, the andronate+HFD group had the most serious insulin resistance (IR). Estrus cycles were completely acyclic, with polycystic ovaries and elevated serum lipid profiles in the andronate+HFD group (P < 0.05). Ra of glucose and GNG increased significantly in the andronate+HFD rats. However, the Ra of glycerol was similar in the three groups.

Conclusions: Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

Show MeSH
Related in: MedlinePlus