Limits...
Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system.

Kim HK, Cho CK - Nanoscale Res Lett (2012)

Bottom Line: We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate.Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm.The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, South Korea. imdlhkkim@khu.ac.kr.

ABSTRACT
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process.

No MeSH data available.


Related in: MedlinePlus

Schematic and structure. (a) Schematic of a continuous R2R sputtering process and (b) structure of the SiON/Ag/SiON multilayer passivation on PES substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3275511&req=5

Figure 1: Schematic and structure. (a) Schematic of a continuous R2R sputtering process and (b) structure of the SiON/Ag/SiON multilayer passivation on PES substrate.

Mentions: The flexible SiON/Ag/SiON multilayer was sputtered on a flexible PES substrate as a function of the SiON thickness using a continuous R2R sputtering system as shown in Figure 1a[13]. The SiON ceramic and Ag metal targets were placed at a distance of 100 mm from the PES substrate, mechanically contacted on the cooling drum. Before the sputtering of the bottom SiON layer, a flexible PES substrate was pretreated with Ar ion beam treatment at a DC-pulsed power of 100 W to enhance adhesion between the PES substrate and the bottom SiON layer. After the ion beam treatment, the bottom SiON layer was sputtered on the PES substrate at a constant base pressure of 1.0 × 10-6 Torr, a working pressure of 3 mTorr, an Ar/O2 flow rate of 30/2 sccm, and a rolling speed of 0.1 cm/s as a function of the SiON target RF power. Subsequently, a constant Ag layer was sputtered on the bottom SiON layer using a DC power of 350 W. The top SiON layer was sputtered on the Ag layer with identical sputtering conditions used for the bottom SiON layer. As shown in Figure 1a, the SiON/Ag/SiON multilayer was continuously deposited without breaking the vacuum in the R2R sputter system. Figure 1b showed the schematic structure of the SiON/Ag/SiON multilayer sputtered on the PES substrate. The thickness of the SiON/Ag/SiON multilayer was measured by a surface profilometer. The optical transmittance of the SiON/Ag/SiON multilayer was measured in a wavelength range from 300 to 1100 nm using a UV/Visible spectrometer as a function of the SiON thickness. In addition, the surface morphology of the top SiON layer in the SiON/Ag/SiON multilayer was investigated by a field emission scanning electron microscope [FESEM]. Moreover, the structural properties of the SiON/Ag/SiON multilayer were examined by X-ray diffraction [XRD] and high resolution transmission electron microscope [HRTEM]. Furthermore, the WVTR value for the SiON/Ag/SiON multilayer passivation grown on the flexible PES substrate (50 mm × 50 mm) was measured by a MOCON tester (PERMATRAN-W Model 3/33, MOCON Inc., Minneapolis, MN, USA) for 20 h. The calibration was conducted using a standard sample supported by MOCON under a flow of 10 sccm water vapor at 37.8°C.


Transparent SiON/Ag/SiON multilayer passivation grown on a flexible polyethersulfone substrate using a continuous roll-to-roll sputtering system.

Kim HK, Cho CK - Nanoscale Res Lett (2012)

Schematic and structure. (a) Schematic of a continuous R2R sputtering process and (b) structure of the SiON/Ag/SiON multilayer passivation on PES substrate.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3275511&req=5

Figure 1: Schematic and structure. (a) Schematic of a continuous R2R sputtering process and (b) structure of the SiON/Ag/SiON multilayer passivation on PES substrate.
Mentions: The flexible SiON/Ag/SiON multilayer was sputtered on a flexible PES substrate as a function of the SiON thickness using a continuous R2R sputtering system as shown in Figure 1a[13]. The SiON ceramic and Ag metal targets were placed at a distance of 100 mm from the PES substrate, mechanically contacted on the cooling drum. Before the sputtering of the bottom SiON layer, a flexible PES substrate was pretreated with Ar ion beam treatment at a DC-pulsed power of 100 W to enhance adhesion between the PES substrate and the bottom SiON layer. After the ion beam treatment, the bottom SiON layer was sputtered on the PES substrate at a constant base pressure of 1.0 × 10-6 Torr, a working pressure of 3 mTorr, an Ar/O2 flow rate of 30/2 sccm, and a rolling speed of 0.1 cm/s as a function of the SiON target RF power. Subsequently, a constant Ag layer was sputtered on the bottom SiON layer using a DC power of 350 W. The top SiON layer was sputtered on the Ag layer with identical sputtering conditions used for the bottom SiON layer. As shown in Figure 1a, the SiON/Ag/SiON multilayer was continuously deposited without breaking the vacuum in the R2R sputter system. Figure 1b showed the schematic structure of the SiON/Ag/SiON multilayer sputtered on the PES substrate. The thickness of the SiON/Ag/SiON multilayer was measured by a surface profilometer. The optical transmittance of the SiON/Ag/SiON multilayer was measured in a wavelength range from 300 to 1100 nm using a UV/Visible spectrometer as a function of the SiON thickness. In addition, the surface morphology of the top SiON layer in the SiON/Ag/SiON multilayer was investigated by a field emission scanning electron microscope [FESEM]. Moreover, the structural properties of the SiON/Ag/SiON multilayer were examined by X-ray diffraction [XRD] and high resolution transmission electron microscope [HRTEM]. Furthermore, the WVTR value for the SiON/Ag/SiON multilayer passivation grown on the flexible PES substrate (50 mm × 50 mm) was measured by a MOCON tester (PERMATRAN-W Model 3/33, MOCON Inc., Minneapolis, MN, USA) for 20 h. The calibration was conducted using a standard sample supported by MOCON under a flow of 10 sccm water vapor at 37.8°C.

Bottom Line: We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate.Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm.The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do, 446-701, South Korea. imdlhkkim@khu.ac.kr.

ABSTRACT
We have investigated the characteristics of a silicon oxynitride/silver/silicon oxynitride [SiON/Ag/SiON] multilayer passivation grown using a specially designed roll-to-roll [R2R] sputtering system on a flexible polyethersulfone substrate. Optical, structural, and surface properties of the R2R grown SiON/Ag/SiON multilayer were investigated as a function of the SiON thickness at a constant Ag thickness of 12 nm. The flexible SiON/Ag/SiON multilayer has a high optical transmittance of 87.7% at optimized conditions due to the antireflection and surface plasmon effects in the oxide-metal-oxide structure. The water vapor transmission rate of the SiON/Ag/SiON multilayer is 0.031 g/m2 day at an optimized SiON thickness of 110 nm. This indicates that R2R grown SiON/Ag/SiON is a promising thin-film passivation for flexible organic light-emitting diodes and flexible organic photovoltaics due to its simple and low-temperature process.

No MeSH data available.


Related in: MedlinePlus