Limits...
Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse.

Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC - BMC Dev. Biol. (2001)

Bottom Line: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis.Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver.The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

View Article: PubMed Central - HTML - PubMed

Affiliation: PEL-FREEZ Clinical Systems, LLC, 9099 North Deerbrook Trail, Brown Deer, WI 53223, USA. ywang@pel-freez.com

ABSTRACT

Background: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse.

Results: cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver.

Conclusion: The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

Show MeSH

Related in: MedlinePlus

mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in a light dark cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on at ZT 0 and off at ZT12. A through D are typical blots of mNoc for each tissue, and the lower panel is a hybridization of the same membrane with a β-actin probe. These blots are representative of three replicate experiments. In E phosphor imaging was used for quantitation of changes in mNoc mRNA level seen in A-D, standardized to β-actin. The minimum for each plot is one and the Y-axis shows the fold change.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC32249&req=5

Figure 3: mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in a light dark cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on at ZT 0 and off at ZT12. A through D are typical blots of mNoc for each tissue, and the lower panel is a hybridization of the same membrane with a β-actin probe. These blots are representative of three replicate experiments. In E phosphor imaging was used for quantitation of changes in mNoc mRNA level seen in A-D, standardized to β-actin. The minimum for each plot is one and the Y-axis shows the fold change.

Mentions: The principal goal of this study was to analyze mNoc mRNA expression. We used C3H/He mice because they are useful for studying clock activity based on rhythmic release of melatonin; C3H/He is one of the few mouse strains that synthesizes melatonin rhythmically [29,44]. In Northern analysis using single stranded probes generated from the mNoc 3' UTR or from exon II, we found that in contrast to our prior work in Xenopus, mNoc is expressed as a single mRNA of about 3 kb (Fig. 2). The only variations from this pattern was diffuse hybridization of the probe above the 3 kb position when gels contained higher levels of mNoc mRNA (Fig. 2, liver and kidney; Fig. 3, 4 and 5 at ZT 12) and diffuse hybridization below the 3 kb band specifically in spleen (Figs. 2, 5C); the latter may reflect RNA degradation.


Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse.

Wang Y, Osterbur DL, Megaw PL, Tosini G, Fukuhara C, Green CB, Besharse JC - BMC Dev. Biol. (2001)

mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in a light dark cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on at ZT 0 and off at ZT12. A through D are typical blots of mNoc for each tissue, and the lower panel is a hybridization of the same membrane with a β-actin probe. These blots are representative of three replicate experiments. In E phosphor imaging was used for quantitation of changes in mNoc mRNA level seen in A-D, standardized to β-actin. The minimum for each plot is one and the Y-axis shows the fold change.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC32249&req=5

Figure 3: mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in a light dark cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on at ZT 0 and off at ZT12. A through D are typical blots of mNoc for each tissue, and the lower panel is a hybridization of the same membrane with a β-actin probe. These blots are representative of three replicate experiments. In E phosphor imaging was used for quantitation of changes in mNoc mRNA level seen in A-D, standardized to β-actin. The minimum for each plot is one and the Y-axis shows the fold change.
Mentions: The principal goal of this study was to analyze mNoc mRNA expression. We used C3H/He mice because they are useful for studying clock activity based on rhythmic release of melatonin; C3H/He is one of the few mouse strains that synthesizes melatonin rhythmically [29,44]. In Northern analysis using single stranded probes generated from the mNoc 3' UTR or from exon II, we found that in contrast to our prior work in Xenopus, mNoc is expressed as a single mRNA of about 3 kb (Fig. 2). The only variations from this pattern was diffuse hybridization of the probe above the 3 kb position when gels contained higher levels of mNoc mRNA (Fig. 2, liver and kidney; Fig. 3, 4 and 5 at ZT 12) and diffuse hybridization below the 3 kb band specifically in spleen (Figs. 2, 5C); the latter may reflect RNA degradation.

Bottom Line: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis.Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver.The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

View Article: PubMed Central - HTML - PubMed

Affiliation: PEL-FREEZ Clinical Systems, LLC, 9099 North Deerbrook Trail, Brown Deer, WI 53223, USA. ywang@pel-freez.com

ABSTRACT

Background: Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse.

Results: cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver.

Conclusion: The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

Show MeSH
Related in: MedlinePlus