Limits...
Self-assembly of copper and cobalt complexes with hierarchical size and catalytic properties for hydroxylation of phenol.

Dong H, Tao W, Bi J, Milway V, Xu Z, Zhang S, Meng X, Bi W, Li J, Li M - Nanoscale Res Lett (2011)

Bottom Line: A feasible and effective self-assembly method to synthesize different scale coordination polymers in highly dilute solution (from nanocrystals to microcrystals and to bulk crystals) without any blocking agent has been described.The growth of crystalline particles was controlled by removing the particles at different reaction times to interrupt the growth at the desired size.The nano and microscale particles show better catalytic conversions and selectivities in the hydroxylation of phenols than the bulk crystals.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China. dapdong@yahoo.com.cn.

ABSTRACT
A feasible and effective self-assembly method to synthesize different scale coordination polymers in highly dilute solution (from nanocrystals to microcrystals and to bulk crystals) without any blocking agent has been described. The growth of crystalline particles was controlled by removing the particles at different reaction times to interrupt the growth at the desired size. The nano and microscale particles show better catalytic conversions and selectivities in the hydroxylation of phenols than the bulk crystals.

No MeSH data available.


Related in: MedlinePlus

Growth-phase control of rods using different crystallization times.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211998&req=5

Figure 2: Growth-phase control of rods using different crystallization times.

Mentions: CuSO4 or CoSO4, 1,10-phenanthroline and sodium oxalate were chosen to synthesize new MCPs. The MCPs were prepared by the stoichiometric reaction of CuSO4/CoSO4 with 1,10-phenanthroline in mixed solution (CH3CH2OH:H2O = 1:1), followed by reaction with a highly dilute solution of sodium oxalate for different reaction times to achieve the series of products named MCPs (Figure 2).


Self-assembly of copper and cobalt complexes with hierarchical size and catalytic properties for hydroxylation of phenol.

Dong H, Tao W, Bi J, Milway V, Xu Z, Zhang S, Meng X, Bi W, Li J, Li M - Nanoscale Res Lett (2011)

Growth-phase control of rods using different crystallization times.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211998&req=5

Figure 2: Growth-phase control of rods using different crystallization times.
Mentions: CuSO4 or CoSO4, 1,10-phenanthroline and sodium oxalate were chosen to synthesize new MCPs. The MCPs were prepared by the stoichiometric reaction of CuSO4/CoSO4 with 1,10-phenanthroline in mixed solution (CH3CH2OH:H2O = 1:1), followed by reaction with a highly dilute solution of sodium oxalate for different reaction times to achieve the series of products named MCPs (Figure 2).

Bottom Line: A feasible and effective self-assembly method to synthesize different scale coordination polymers in highly dilute solution (from nanocrystals to microcrystals and to bulk crystals) without any blocking agent has been described.The growth of crystalline particles was controlled by removing the particles at different reaction times to interrupt the growth at the desired size.The nano and microscale particles show better catalytic conversions and selectivities in the hydroxylation of phenols than the bulk crystals.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China. dapdong@yahoo.com.cn.

ABSTRACT
A feasible and effective self-assembly method to synthesize different scale coordination polymers in highly dilute solution (from nanocrystals to microcrystals and to bulk crystals) without any blocking agent has been described. The growth of crystalline particles was controlled by removing the particles at different reaction times to interrupt the growth at the desired size. The nano and microscale particles show better catalytic conversions and selectivities in the hydroxylation of phenols than the bulk crystals.

No MeSH data available.


Related in: MedlinePlus