Limits...
Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate.

Abreu AS, Castanheira EM, Queiroz MJ, Ferreira PM, Vale-Silva LA, Pinto E - Nanoscale Res Lett (2011)

Bottom Line: This compound was encapsulated in different nanosized liposome formulations, containing egg lecithin (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), DSPC, cholesterol, dihexadecyl phosphate, and DSPE-PEG.Dynamic light scattering measurements showed that nanoliposomes with the encapsulated compound are generally monodisperse and with hydrodynamic diameters lower than 120 nm, good stability and zeta potential values lower than -18 mV.Dialysis experiments allowed to monitor compound diffusion through the lipid membrane, from DPPC/DPPG donor liposomes to NBD-labelled lipid/DPPC/DPPG acceptor liposomes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. anabreu@quimica.uminho.pt.

ABSTRACT
A potential antitumoral fluorescent indole derivative, methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate, was evaluated for the in vitro cell growth inhibition on three human tumor cell lines, MCF-7 (breast adenocarcinoma), A375-C5 (melanoma), and NCI-H460 (non-small cell lung cancer), after a continuous exposure of 48 h, exhibiting very low GI50 values for all the cell lines tested (0.25 to 0.33 μM). This compound was encapsulated in different nanosized liposome formulations, containing egg lecithin (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), DSPC, cholesterol, dihexadecyl phosphate, and DSPE-PEG. Dynamic light scattering measurements showed that nanoliposomes with the encapsulated compound are generally monodisperse and with hydrodynamic diameters lower than 120 nm, good stability and zeta potential values lower than -18 mV. Dialysis experiments allowed to monitor compound diffusion through the lipid membrane, from DPPC/DPPG donor liposomes to NBD-labelled lipid/DPPC/DPPG acceptor liposomes.

No MeSH data available.


Related in: MedlinePlus

Percentage of drug transfer in dialysis between DPPC/DPPG liposomes and NBD-labelled lipid/DPPC/DPPG liposomes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211996&req=5

Figure 4: Percentage of drug transfer in dialysis between DPPC/DPPG liposomes and NBD-labelled lipid/DPPC/DPPG liposomes.

Mentions: The percentage of energy transfer from compound 1 to NBD is higher when the acceptor nanoliposomes are labelled with NBD-PE (NBD linked at lipid head group) (Figure 4). In this case, it can be observed that energy transfer is higher for the 12- to 14-KDa dialysis membrane. It can also be concluded that, after 36 h of dialysis, compound 1 is located mainly near the polar head groups of the phospholipids in the acceptor nanoliposomes, as energy transfer to NBD is less efficient when this energy acceptor is located deeper in the lipid chain (NBD-C12 or NBD-C6) (Figure 4).


Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate.

Abreu AS, Castanheira EM, Queiroz MJ, Ferreira PM, Vale-Silva LA, Pinto E - Nanoscale Res Lett (2011)

Percentage of drug transfer in dialysis between DPPC/DPPG liposomes and NBD-labelled lipid/DPPC/DPPG liposomes.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211996&req=5

Figure 4: Percentage of drug transfer in dialysis between DPPC/DPPG liposomes and NBD-labelled lipid/DPPC/DPPG liposomes.
Mentions: The percentage of energy transfer from compound 1 to NBD is higher when the acceptor nanoliposomes are labelled with NBD-PE (NBD linked at lipid head group) (Figure 4). In this case, it can be observed that energy transfer is higher for the 12- to 14-KDa dialysis membrane. It can also be concluded that, after 36 h of dialysis, compound 1 is located mainly near the polar head groups of the phospholipids in the acceptor nanoliposomes, as energy transfer to NBD is less efficient when this energy acceptor is located deeper in the lipid chain (NBD-C12 or NBD-C6) (Figure 4).

Bottom Line: This compound was encapsulated in different nanosized liposome formulations, containing egg lecithin (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), DSPC, cholesterol, dihexadecyl phosphate, and DSPE-PEG.Dynamic light scattering measurements showed that nanoliposomes with the encapsulated compound are generally monodisperse and with hydrodynamic diameters lower than 120 nm, good stability and zeta potential values lower than -18 mV.Dialysis experiments allowed to monitor compound diffusion through the lipid membrane, from DPPC/DPPG donor liposomes to NBD-labelled lipid/DPPC/DPPG acceptor liposomes.

View Article: PubMed Central - HTML - PubMed

Affiliation: Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. anabreu@quimica.uminho.pt.

ABSTRACT
A potential antitumoral fluorescent indole derivative, methyl 6-methoxy-3-(4-methoxyphenyl)-1H-indole-2-carboxylate, was evaluated for the in vitro cell growth inhibition on three human tumor cell lines, MCF-7 (breast adenocarcinoma), A375-C5 (melanoma), and NCI-H460 (non-small cell lung cancer), after a continuous exposure of 48 h, exhibiting very low GI50 values for all the cell lines tested (0.25 to 0.33 μM). This compound was encapsulated in different nanosized liposome formulations, containing egg lecithin (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), DSPC, cholesterol, dihexadecyl phosphate, and DSPE-PEG. Dynamic light scattering measurements showed that nanoliposomes with the encapsulated compound are generally monodisperse and with hydrodynamic diameters lower than 120 nm, good stability and zeta potential values lower than -18 mV. Dialysis experiments allowed to monitor compound diffusion through the lipid membrane, from DPPC/DPPG donor liposomes to NBD-labelled lipid/DPPC/DPPG acceptor liposomes.

No MeSH data available.


Related in: MedlinePlus