Limits...
Mechanical characterization of nanoindented graphene via molecular dynamics simulations.

Fang TH, Wang TH, Yang JC, Hsiao YJ - Nanoscale Res Lett (2011)

Bottom Line: The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity.Resistance to deformation decreased at higher temperature.Strong adhesion caused topological defects and vacancies during the unloading process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Rd,, Kaohsiung 807, Taiwan. fang.tehua@msa.hinet.net.

ABSTRACT
The mechanical behavior of graphene under various indentation depths, velocities, and temperatures is studied using molecular dynamics analysis. The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity. Nanoindentation induced pile ups and corrugations of the graphene. Resistance to deformation decreased at higher temperature. Strong adhesion caused topological defects and vacancies during the unloading process.

No MeSH data available.


Related in: MedlinePlus

Load versus time for various indentation depths.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211995&req=5

Figure 3: Load versus time for various indentation depths.

Mentions: The effect of indentation depth was examined. With all other conditions fixed, indentation depths of 0, 0.2, 0.4, and 0.6 nm were investigated. Figure 3 shows the force versus time curves for various indentation depths. The average maximum forces at indentation depths of 0, 0.2, 0.4, and 0.6 nm are 139.43, 195.47, 240.42, and 260.08 nN, respectively, indicating that the load increased with indentation depth. This is due to the number of atoms in contact with the tip increasing with indentation depth. Figure 4 shows the elastic energy and plastic energy versus displacement curves. The elastic and plastic energies both increase with increasing displacement. The average relaxation forces are 123.71, 141.10, 156.00, and 161.21 nN for indentation depths of 0, 0.2, 0.4, and 0.6 nm, respectively. The central heights of the residual ripple after unloading are 0.998, 1.104, 1.253, and 1.3224 nm for indentation depths of 0, 0.2, 0.4, and 0.6 nm, respectively.


Mechanical characterization of nanoindented graphene via molecular dynamics simulations.

Fang TH, Wang TH, Yang JC, Hsiao YJ - Nanoscale Res Lett (2011)

Load versus time for various indentation depths.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211995&req=5

Figure 3: Load versus time for various indentation depths.
Mentions: The effect of indentation depth was examined. With all other conditions fixed, indentation depths of 0, 0.2, 0.4, and 0.6 nm were investigated. Figure 3 shows the force versus time curves for various indentation depths. The average maximum forces at indentation depths of 0, 0.2, 0.4, and 0.6 nm are 139.43, 195.47, 240.42, and 260.08 nN, respectively, indicating that the load increased with indentation depth. This is due to the number of atoms in contact with the tip increasing with indentation depth. Figure 4 shows the elastic energy and plastic energy versus displacement curves. The elastic and plastic energies both increase with increasing displacement. The average relaxation forces are 123.71, 141.10, 156.00, and 161.21 nN for indentation depths of 0, 0.2, 0.4, and 0.6 nm, respectively. The central heights of the residual ripple after unloading are 0.998, 1.104, 1.253, and 1.3224 nm for indentation depths of 0, 0.2, 0.4, and 0.6 nm, respectively.

Bottom Line: The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity.Resistance to deformation decreased at higher temperature.Strong adhesion caused topological defects and vacancies during the unloading process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Rd,, Kaohsiung 807, Taiwan. fang.tehua@msa.hinet.net.

ABSTRACT
The mechanical behavior of graphene under various indentation depths, velocities, and temperatures is studied using molecular dynamics analysis. The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity. Nanoindentation induced pile ups and corrugations of the graphene. Resistance to deformation decreased at higher temperature. Strong adhesion caused topological defects and vacancies during the unloading process.

No MeSH data available.


Related in: MedlinePlus