Limits...
Mechanical characterization of nanoindented graphene via molecular dynamics simulations.

Fang TH, Wang TH, Yang JC, Hsiao YJ - Nanoscale Res Lett (2011)

Bottom Line: The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity.Resistance to deformation decreased at higher temperature.Strong adhesion caused topological defects and vacancies during the unloading process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Rd,, Kaohsiung 807, Taiwan. fang.tehua@msa.hinet.net.

ABSTRACT
The mechanical behavior of graphene under various indentation depths, velocities, and temperatures is studied using molecular dynamics analysis. The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity. Nanoindentation induced pile ups and corrugations of the graphene. Resistance to deformation decreased at higher temperature. Strong adhesion caused topological defects and vacancies during the unloading process.

No MeSH data available.


Related in: MedlinePlus

Snapshots of indentation process. At (a) 33 ps, (b) 44 ps, (c) 59 ps, and (d) 130 ps.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211995&req=5

Figure 2: Snapshots of indentation process. At (a) 33 ps, (b) 44 ps, (c) 59 ps, and (d) 130 ps.

Mentions: Figure 2 shows snapshots of graphene being indented by the hemispherical diamond tip at a velocity of 25 m/s, a hold time of 15 ps, and a temperature of 300 K. Thermal equilibrium was achieved before the indentation to have the atoms in a stable state. Figure 2a shows the initial contact of indentation at 33 ps. During indentation, the potential energy of the tip affects the surface atoms, especially those beneath the tip. Thus, some of the atoms jumped up and made contact with the tip, which is known as the jump-to-contact phenomenon.


Mechanical characterization of nanoindented graphene via molecular dynamics simulations.

Fang TH, Wang TH, Yang JC, Hsiao YJ - Nanoscale Res Lett (2011)

Snapshots of indentation process. At (a) 33 ps, (b) 44 ps, (c) 59 ps, and (d) 130 ps.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211995&req=5

Figure 2: Snapshots of indentation process. At (a) 33 ps, (b) 44 ps, (c) 59 ps, and (d) 130 ps.
Mentions: Figure 2 shows snapshots of graphene being indented by the hemispherical diamond tip at a velocity of 25 m/s, a hold time of 15 ps, and a temperature of 300 K. Thermal equilibrium was achieved before the indentation to have the atoms in a stable state. Figure 2a shows the initial contact of indentation at 33 ps. During indentation, the potential energy of the tip affects the surface atoms, especially those beneath the tip. Thus, some of the atoms jumped up and made contact with the tip, which is known as the jump-to-contact phenomenon.

Bottom Line: The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity.Resistance to deformation decreased at higher temperature.Strong adhesion caused topological defects and vacancies during the unloading process.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien Kung Rd,, Kaohsiung 807, Taiwan. fang.tehua@msa.hinet.net.

ABSTRACT
The mechanical behavior of graphene under various indentation depths, velocities, and temperatures is studied using molecular dynamics analysis. The results show that the load, elastic and plastic energies, and relaxation force increased with increasing indentation depth and velocity. Nanoindentation induced pile ups and corrugations of the graphene. Resistance to deformation decreased at higher temperature. Strong adhesion caused topological defects and vacancies during the unloading process.

No MeSH data available.


Related in: MedlinePlus