Limits...
Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells.

Kai W, Xiaojun X, Ximing P, Zhenqing H, Qiqing Z - Nanoscale Res Lett (2011)

Bottom Line: The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol.Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway.The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China. qiq@xmu.edu.cn.

ABSTRACT
The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

No MeSH data available.


Related in: MedlinePlus

MNPs-induced loss of MMP. The MMP was measured by flow cytometry using JC-1 dye. Exposure of BEL-7402 cells to three types of MNPs (0.05 and 1 mg/mL) for 24 h decreased the MMP. *P < 0.05 vs. control; **P < 0.01 vs. control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211994&req=5

Figure 4: MNPs-induced loss of MMP. The MMP was measured by flow cytometry using JC-1 dye. Exposure of BEL-7402 cells to three types of MNPs (0.05 and 1 mg/mL) for 24 h decreased the MMP. *P < 0.05 vs. control; **P < 0.01 vs. control.

Mentions: The mitochondrion is an important organelle involved in apoptosis. The loss of MMP is putatively the initial event leading to apoptosis [45]. To further elucidate the molecular mechanism of MNPs-induced apoptosis in BEL-7402, we examined loss of MMP using flow cytometry. As illustrated in Figure 4, after 24-h exposure to MNPs (0.05 mg/mL) for 24 h, a significant decrease in MMP was only observed in C-Fe-treated group (P < 0.05), while at high concentration (1 mg/mL), significant decrease of MMP occurred in all three MNPs-treated groups (P < 0.05).


Cytotoxic effects and the mechanism of three types of magnetic nanoparticles on human hepatoma BEL-7402 cells.

Kai W, Xiaojun X, Ximing P, Zhenqing H, Qiqing Z - Nanoscale Res Lett (2011)

MNPs-induced loss of MMP. The MMP was measured by flow cytometry using JC-1 dye. Exposure of BEL-7402 cells to three types of MNPs (0.05 and 1 mg/mL) for 24 h decreased the MMP. *P < 0.05 vs. control; **P < 0.01 vs. control.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211994&req=5

Figure 4: MNPs-induced loss of MMP. The MMP was measured by flow cytometry using JC-1 dye. Exposure of BEL-7402 cells to three types of MNPs (0.05 and 1 mg/mL) for 24 h decreased the MMP. *P < 0.05 vs. control; **P < 0.01 vs. control.
Mentions: The mitochondrion is an important organelle involved in apoptosis. The loss of MMP is putatively the initial event leading to apoptosis [45]. To further elucidate the molecular mechanism of MNPs-induced apoptosis in BEL-7402, we examined loss of MMP using flow cytometry. As illustrated in Figure 4, after 24-h exposure to MNPs (0.05 mg/mL) for 24 h, a significant decrease in MMP was only observed in C-Fe-treated group (P < 0.05), while at high concentration (1 mg/mL), significant decrease of MMP occurred in all three MNPs-treated groups (P < 0.05).

Bottom Line: The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol.Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway.The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China. qiq@xmu.edu.cn.

ABSTRACT
The evaluation of the toxicity of magnetic nanoparticles (MNPs) has attracted much attention in recent years. The current study aimed to investigate the cytotoxic effects of Fe3O4, oleic acid-coated Fe3O4 (OA-Fe3O4), and carbon-coated Fe (C-Fe) nanoparticles on human hepatoma BEL-7402 cells and the mechanisms. WST-1 assay demonstrated that the cytotoxicity of three types of MNPs was in a dose-dependent manner. G1 (Fe3O4 and OA-Fe3O4) phase and G2 (C-Fe) phase cell arrests and apoptosis induced by MNPs were detected by flow cytometry analysis. The increase in apoptosis was accompanied with the Bax over-expression, mitochondrial membrane potential decrease, and the release of cytochrome C from mitochondria into cytosol. Moreover, apoptosis was further confirmed by morphological and biochemical hallmarks, such as swollen mitochondria with lysing cristae and caspase-3 activation. Our results revealed that certain concentrations of the three types of MNPs affect BEL-7402 cells viability via cell arrest and inducing apoptosis, and the MNPs-induced apoptosis is mediated through the mitochondrial-dependent pathway. The influence potency of MNPs observed in all experiments would be: C-Fe > Fe3O4 > OA-Fe3O4.

No MeSH data available.


Related in: MedlinePlus