Limits...
Atom devices based on single dopants in silicon nanostructures.

Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido JC, Mizuno T, Tabe M - Nanoscale Res Lett (2011)

Bottom Line: Such technological trend brought us to a research stage on devices working with one or a few dopant atoms.In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism.These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Nakaku, Hamamatsu, 432-8011, Japan. romtabe@rie.shizuoka.ac.jp.

ABSTRACT
Silicon field-effect transistors have now reached gate lengths of only a few tens of nanometers, containing a countable number of dopants in the channel. Such technological trend brought us to a research stage on devices working with one or a few dopant atoms. In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism. Furthermore, observation of individual dopant potential in the channel by Kelvin probe force microscopy is also presented. These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

No MeSH data available.


Related in: MedlinePlus

Photon-generated electron trapping in donor arrays. (a) Device structure of a back-gated SOI-FET for light illumination measurements. With VG set on the first observable current peak (b), effects of photon absorption in the nanoscale channel can be observed as RTS in the time-domain measurements (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211992&req=5

Figure 4: Photon-generated electron trapping in donor arrays. (a) Device structure of a back-gated SOI-FET for light illumination measurements. With VG set on the first observable current peak (b), effects of photon absorption in the nanoscale channel can be observed as RTS in the time-domain measurements (c).

Mentions: A similar mechanism could be expected when the QD array is replaced by an array of donors. In order to clarify this point, we investigated the effects of (visible) light irradiation on doped-channel FETs without a front gate. For these devices, the substrate Si was used as a back gate, allowing an operation similar to that of front-gate devices. The basic device structure is shown in Figure 4a. We first measured the low-temperature (approximately 15 K) ID-VG characteristics, as shown in Figure 4b, under conditions of visible light illumination (λ = 550 nm) with low incident flux. The characteristics exhibit irregular current peaks, similarly to front-gate devices. We focused on the first observable peak that can be ascribed to single-electron tunneling transport via lowest-energy donors in the channel [13]. We aimed at clarifying whether photon-generated carriers can be trapped or not in the remaining available donors.


Atom devices based on single dopants in silicon nanostructures.

Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido JC, Mizuno T, Tabe M - Nanoscale Res Lett (2011)

Photon-generated electron trapping in donor arrays. (a) Device structure of a back-gated SOI-FET for light illumination measurements. With VG set on the first observable current peak (b), effects of photon absorption in the nanoscale channel can be observed as RTS in the time-domain measurements (c).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211992&req=5

Figure 4: Photon-generated electron trapping in donor arrays. (a) Device structure of a back-gated SOI-FET for light illumination measurements. With VG set on the first observable current peak (b), effects of photon absorption in the nanoscale channel can be observed as RTS in the time-domain measurements (c).
Mentions: A similar mechanism could be expected when the QD array is replaced by an array of donors. In order to clarify this point, we investigated the effects of (visible) light irradiation on doped-channel FETs without a front gate. For these devices, the substrate Si was used as a back gate, allowing an operation similar to that of front-gate devices. The basic device structure is shown in Figure 4a. We first measured the low-temperature (approximately 15 K) ID-VG characteristics, as shown in Figure 4b, under conditions of visible light illumination (λ = 550 nm) with low incident flux. The characteristics exhibit irregular current peaks, similarly to front-gate devices. We focused on the first observable peak that can be ascribed to single-electron tunneling transport via lowest-energy donors in the channel [13]. We aimed at clarifying whether photon-generated carriers can be trapped or not in the remaining available donors.

Bottom Line: Such technological trend brought us to a research stage on devices working with one or a few dopant atoms.In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism.These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Nakaku, Hamamatsu, 432-8011, Japan. romtabe@rie.shizuoka.ac.jp.

ABSTRACT
Silicon field-effect transistors have now reached gate lengths of only a few tens of nanometers, containing a countable number of dopants in the channel. Such technological trend brought us to a research stage on devices working with one or a few dopant atoms. In this work, we review our most recent studies on key atom devices with fundamental structures of silicon-on-insulator MOSFETs, such as single-dopant transistors, preliminary memory devices, single-electron turnstile devices and photonic devices, in which electron tunneling mediated by single dopant atoms is the essential transport mechanism. Furthermore, observation of individual dopant potential in the channel by Kelvin probe force microscopy is also presented. These results may pave the way for the development of a new device technology, i.e., single-dopant atom electronics.

No MeSH data available.


Related in: MedlinePlus